12 research outputs found

    Perceptions of challenges to subsistence agriculture, and crop foraging by wildlife and chimpanzees Pan troglodytes verus in unprotected areas in Sierra Leone

    Get PDF
    The 2009–2010 Sierra Leone National Chimpanzee Census Project estimated there was a population of 5,580 chimpanzees Pan troglodytes verus distributed across the country, with > 50% occurring outside protected areas. The census also highlighted the significance of competition between people and chimpanzees for resources in areas dominated by farming activities where wild chimpanzees forage on crops. We selected four study areas in two districts in Sierra Leone with high chimpanzee density in habitats dominated by agriculture, far from any protected areas. Our objectives were to assess farmers’ perceptions of the main challenges to their agricultural yields, and the wildlife involved in crop foraging, and their perceptions of chimpanzees in particular, as well as the main crop protection measures used. We conducted 257 semi-structured interviews with local farmers across the four study areas. We found that (1) farmers reported wild animals as the main challenge to their agricultural practices; (2) most complaints concerned cane rats Thryonomys swinderianus, which targeted almost all crop types, especially rice and cassava; (3) chimpanzees reportedly targeted 21 of the 23 crop types cultivated, but did so less often than cane rats, focusing particularly on oil palm, cassava and domestic fruits; (4) overall, chimpanzees were not among the top three most destructive animals reported; (5) chimpanzees were generally perceived as being more destructive than dangerous and as having declined since before the civil war; and (6) the main crop protection measure employed was fencing interspersed with traps. Our findings show the importance of investigating farmers’ perceptions to inform the development of appropriate conservation strategies aimed at promoting coexistence of people and wildlife in degraded landscapes

    Characteristics of Positive Deviants in Western Chimpanzee Populations

    Get PDF
    With continued expansion of anthropogenically modified landscapes, the proximity between humans and wildlife is continuing to increase, frequently resulting in species decline. Occasionally however, species are able to persist and there is an increased interest in understanding such positive outliers and underlying mechanisms. Eventually, such insights can inform the design of effective conservation interventions by mimicking aspects of the social-ecological conditions found in areas of species persistence. Recently, frameworks have been developed to study the heterogeneity of species persistence across populations with a focus on positive outliers. Applications are still rare, and to our knowledge this is one of the first studies using this approach for terrestrial species conservation. We applied the positive deviance concept to the western chimpanzee, which occurs in a variety of social-ecological landscapes. It is now categorized as Critically Endangered due to hunting and habitat loss and resulting excessive decline of most of its populations. Here we are interested in understanding why some of the populations did not decline. We compiled a dataset of 17,109 chimpanzee survey transects (10,929 km) across nine countries and linked them to a range of social and ecological variables. We found that chimpanzees seemed to persist within three social-ecological configurations: first, rainforest habitats with a low degree of human impact, second, steep areas, and third, areas with high prevalence of hunting taboos and low degree of human impact. The largest chimpanzee populations are nowadays found under the third social-ecological configuration, even though most of these areas are not officially protected. Most commonly chimpanzee conservation has been based on exclusion of threats by creation of protected areas and law enforcement. Our findings suggest, however, that this approach should be complemented by an additional focus on threat reduction, i.e., interventions that directly target individual human behavior that is most threatening to chimpanzees, which is hunting. Although changing human behavior is difficult, stakeholder co-designed behavioral change approaches developed in the social sciences have been used successfully to promote pro-environmental behavior. With only a fraction of chimpanzees and primates living inside protected areas, such new approaches might be a way forward to improve primate conservation

    Advancing conservation planning for western chimpanzees using IUCN SSC A.P.E.S.-the case of a taxon-specific database

    Get PDF
    Even though information on global biodiversity trends becomes increasingly available, large taxonomic and spatial data gaps persist at the scale relevant to planning conservation interventions. This is because data collectors are hesitant to share datawith global repositories due toworkload, lack of incentives, and perceived risk of losing intellectual property rights. In contrast, due to greater conceptual and methodological proximity, taxon-specific database initiatives can provide more direct benefits to data collectors through research collaborations and shared authorship.TheIUCNSSC Ape Populations, Environments and Surveys (A.P.E.S.) database was created in 2005 as a repository for data on great apes and other primate taxa. It aims to acquire field survey data and make different types of data accessible, and provide up-to-date species status information. To support the current update of the conservation action plan forwestern chimpanzees (Pan troglodytes verus) we compiled field surveys for this taxon from IUCNSSCA.P.E.S., 75%ofwhich were unpublished. We used spatial modeling to infer total population size, range-wide density distribution, population connectivity and landscape-scale metrics.Weestimated a total abundance of 52 800 (95%CI 17 577–96 564) western chimpanzees, of which only 17%occurred in national parks.We also found that 10%of chimpanzees live within 25 kmof fourmulti-national ‘development corridors’ currently planned forWestAfrica. These large infrastructure projects aim to promote economic integration and agriculture expansion, but are likely to cause further habitat loss and reduce population connectivity.We close by demonstrating the wealth of conservation-relevant information derivable from a taxon-specific database like IUCNSSC A.P.E.S. and propose that a network of many more such databases could be created to provide the essential information to conservation that can neither be supplied by one-off projects nor by global repositories, and thus are highly complementary to existing initiatives

    Range-wide indicators of African great ape density distribution

    Get PDF
    Species distributions are influenced by processes occurring at multiple spatial scales. It is therefore insufficient to model species distribution at a single geographic scale, as this does not provide the necessary understanding of determining factors. Instead, multiple approaches are needed, each differing in spatial extent, grain, and research objective. Here, we present the first attempt to model continent-wide great ape density distribution. We used site-level estimates of African great ape abundance to (1) identify socioeconomic and environmental factors that drive densities at the continental scale, and (2) predict range-wide great ape density. We collated great ape abundance estimates from 156 sites and defined 134 pseudo-absence sites to represent additional absence locations. The latter were based on locations of unsuitable environmental conditions for great apes, and on existing literature. We compiled seven socioeconomic and environmental covariate layers and fitted a generalized linear model to investigate their influence on great ape abundance. We used an Akaike-weighted average of full and subset models to predict the range-wide density distribution of African great apes for the year 2015. Great ape densities were lowest where there were high Human Footprint and Gross Domestic Product values; the highest predicted densities were in Central Africa, and the lowest in West Africa. Only 10.7% of the total predicted population was found in the International Union for Conservation of Nature Category I and II protected areas. For 16 out of 20 countries, our estimated abundances were largely in line with those from previous studies. For four countries, Central African Republic, Democratic Republic of the Congo, Liberia, and South Sudan, the estimated populations were excessively high. We propose further improvements to the model to overcome survey and predictor data limitations, which would enable a temporally dynamic approach for monitoring great apes across their range based on key indicators.Additional co-authors: Jessica Ganas-Swaray, Nicholas Granier, Elizabeth Greengrass, Stefanie Heinicke, Ilka Herbinger, Clement Inkamba-Nkulu, Fortuné Iyenguet, Jessica Junker, Kadiri S. Bobo, Alain Lushimba, Guy Aimé Florent Malanda, Maureen S. McCarthy, Prosper Motsaba, Jennifer Moustgaard, Mizuki Murai, Bezangoye Ndokoue, Stuart Nixon, Rostand Aba'a Nseme, Zacharie Nzooh, Lilian Pintea, Andrew J. Plumptre, Justin Roy, Aaron Rundus, Jim Sanderson, Adeline Serckx, Samantha Strindberg, Clement Tweh, Hilde Vanleeuwe, Ashley Vosper, Matthias Waltert, Michael Wilson, Roger Mundry, Hjalmar S. Küh

    Predicting range shifts of African apes under global change scenarios

    Get PDF
    Aim: Modelling African great ape distribution has until now focused on current or past conditions, while future scenarios remain scarcely explored. Using an ensemble forecasting approach, we predicted changes in taxon-specific distribution under future scenarios of climate, land use and human populations for (1) areas outside protected areas (PAs) only (assuming complete management effectiveness of PAs), (2) the entire study region and (3) interspecies range overlap. Location: Tropical Africa. Methods: We compiled occurrence data (n = 5,203) on African apes from the IUCN A.P.E.S. database and extracted relevant climate-, habitat- and human-related predictors representing current and future (2050) conditions to predict taxon-specific range change under a best- and a worst-case scenario, using ensemble forecasting. Results: The predictive performance of the models varied across taxa. Synergistic interactions between predictors are shaping African ape distribution, particularly human-related variables. On average across taxa, a range decline of 50% is expected outside PAs under the best scenario if no dispersal occurs (61% in worst scenario). Otherwise, an 85% range reduction is predicted to occur across study regions (94% worst). However, range gains are predicted outside PAs if dispersal occurs (52% best, 21% worst), with a slight increase in gains expected across study regions (66% best, 24% worst). Moreover, more than half of range losses and gains are predicted to occur outside PAs where interspecific ranges overlap. Main Conclusions: Massive range decline is expected by 2050, but range gain is uncertain as African apes will not be able to occupy these new areas immediately due to their limited dispersal capacity, migration lag and ecological constraints. Given that most future range changes are predicted outside PAs, Africa\u27s current PA network is likely to be insufficient for preserving suitable habitats and maintaining connected ape populations. Thus, conservation planners urgently need to integrate land use planning and climate change mitigation measures at all decision-making levels both in range countries and abroad

    Characteristics of Positive Deviants in Western Chimpanzee Populations

    Get PDF
    With continued expansion of anthropogenically modified landscapes, the proximity between humans and wildlife is continuing to increase, frequently resulting in species decline. Occasionally however, species are able to persist and there is an increased interest in understanding such positive outliers and underlying mechanisms. Eventually, such insights can inform the design of effective conservation interventions by mimicking aspects of the social-ecological conditions found in areas of species persistence. Recently, frameworks have been developed to study the heterogeneity of species persistence across populations with a focus on positive outliers. Applications are still rare, and to our knowledge this is one of the first studies using this approach for terrestrial species conservation. We applied the positive deviance concept to the western chimpanzee, which occurs in a variety of social-ecological landscapes. It is now categorized as Critically Endangered due to hunting and habitat loss and resulting excessive decline of most of its populations. Here we are interested in understanding why some of the populations did not decline. We compiled a dataset of 17,109 chimpanzee survey transects (10,929 km) across nine countries and linked them to a range of social and ecological variables. We found that chimpanzees seemed to persist within three social-ecological configurations: first, rainforest habitats with a low degree of human impact, second, steep areas, and third, areas with high prevalence of hunting taboos and low degree of human impact. The largest chimpanzee populations are nowadays found under the third social-ecological configuration, even though most of these areas are not officially protected. Most commonly chimpanzee conservation has been based on exclusion of threats by creation of protected areas and law enforcement. Our findings suggest, however, that this approach should be complemented by an additional focus on threat reduction, i.e., interventions that directly target individual human behavior that is most threatening to chimpanzees, which is hunting. Although changing human behavior is difficult, stakeholder co-designed behavioral change approaches developed in the social sciences have been used successfully to promote pro-environmental behavior. With only a fraction of chimpanzees and primates living inside protected areas, such new approaches might be a way forward to improve primate conservation

    The interface between wild chimpanzee culture, land use management and agricultural development: the case of the oil palm

    No full text
    The oil palm (Elaeis guineensis) is a common and sometimes predominant feature of many West African landscapes. In countries such as Guinea and Sierra Leone, wild or feral oil palms often dominate fallow and cultivated fields, as well as abandoned or recent human settlements; they also thrive in gallery and secondary forests. We will highlight here the extent to which wild chimpanzees differ in their cultural use and dependence on the oil palm. Across Africa, many wild chimpanzee communities make use of oil palm parts for feeding and nesting purposes. People also traditionally depend on the oil palm for a range of purposes including among others cooking, soap and wine making and construction for both subsistence and commercial purposes. Increasing global demand for oil palm is rapidly changing the landscape to include both large and small scale plantations. We used data gathered as part of a nationwide survey of chimpanzees as well as from more focused studies in areas reporting high levels of human-wildlife interactions to assess 1) the extent of competition in the use of oil palm between people, chimpanzees and other wildlife and 2) relative perceptions concerning competition for the oil palm between chimpanzees and people. We discuss the implication of these patterns with respect to land use management and agricultural development in West Africa

    Range-wide indicators of African great ape density distribution

    Get PDF
    Species distributions are influenced by processes occurring at multiple spatial scales. It is therefore insufficient to model species distribution at a single geographic scale, as this does not provide the necessary understanding of determining factors. Instead, multiple approaches are needed, each differing in spatial extent, grain, and research objective. Here, we present the first attempt to model continent-wide great ape density distribution. We used site-level estimates of African great ape abundance to (1) identify socioeconomic and environmental factors that drive densities at the continental scale, and (2) predict range-wide great ape density. We collated great ape abundance estimates from 156 sites and defined 134 pseudo-absence sites to represent additional absence locations. The latter were based on locations of unsuitable environmental conditions for great apes, and on existing literature. We compiled seven socioeconomic and environmental covariate layers and fitted a generalized linear model to investigate their influence on great ape abundance. We used an Akaike-weighted average of full and subset models to predict the range-wide density distribution of African great apes for the year 2015. Great ape densities were lowest where there were high Human Footprint and Gross Domestic Product values; the highest predicted densities were in Central Africa, and the lowest in West Africa. Only 10.7% of the total predicted population was found in the International Union for Conservation of Nature Category I and II protected areas. For 16 out of 20 countries, our estimated abundances were largely in line with those from previous studies. For four countries, Central African Republic, Democratic Republic of the Congo, Liberia, and South Sudan, the estimated populations were excessively high. We propose further improvements to the model to overcome survey and predictor data limitations, which would enable a temporally dynamic approach for monitoring great apes across their range based on key indicators
    corecore