30 research outputs found

    Student perceptions of remote learning transitions in engineering disciplines during the COVID-19 pandemic: a cross-national study

    Get PDF
    This study captures student perceptions of the effectiveness of remote learning and assessment in two associated engineering disciplines, mechanical and industrial, during the COVID-19 pandemic in a cross-national study. A structured questionnaire with 24 items on a 5-point Likert scale was used. Parallel and exploratory factor analyses identified three primary subscales. The links between student perceptions and assessment outcomes were also studied. There was a clear preference for face-to-face teaching, with the highest for laboratories. Remote live lectures were preferred over recorded. Although students found the switch to remote learning helpful, group work and communication were highlighted as concern areas. Mean scores on subscales indicate a low preference for remote learning (2.23), modest delivery effectiveness (3.05) and effective digital delivery tools (3.61). Gender effects were found significant on all subscales, along with significant interactions with university and year-group. Preference for remote delivery of design-based modules was significantly higher than others

    Student perceptions of remote learning transitions in engineering disciplines during the COVID-19 pandemic: a cross-national study

    No full text
    From Crossref journal articles via Jisc Publications RouterHistory: epub 2022-06-06, issued 2022-06-06, ppub 2023-01-02Article version: VoRPublication status: Publishe

    Multi-metric Evaluation of the Effectiveness of Remote Learning in Mechanical and Industrial Engineering During the COVID-19 Pandemic: Indicators and Guidance for Future Preparedness, 2021

    No full text
    This data set is a follow on study from a study on remote learning conducted in 2020 during the first year of the COVID-19 pandemic. It contains data collected from 5 universities in 5 countries about the effectiveness of e-learning during the COVID-19 pandemic in 2021, specifically tailored to mechanical and industrial engineering students. A survey was administered in August 2021 at these universities simultaneously, using Google Forms. The survey had 41 questions, including 24 questions on a 5-point Likert scale. The survey questions gathered data on their program of study, year of study, university of enrolment and mode of accessing their online learning content. The Likert scale questions on the survey gathered data on the effectiveness of digital delivery tools, student preferences for remote learning and the success of the digital delivery tools during the pandemic. All students enrolled in modules taught by the authors of this study were encouraged to fill the survey up. Additionally, remaining students in the departments associated with the authors were also encouraged to fill up the form through emails sent on mailing lists. The survey was also advertised on external websites such as survey circle and facebook. Crucial insights have been obtained after analysing this data set that link the student demographic profile (gender, program of study, year of study, university) to their preferences for remote learning and effectiveness of digital delivery tools. This data set can be used for further comparative studies and was useful to get a snapshot of the evolution of the student preferences and e-learning effectiveness during the COVID-19 pandemic from 2020 to 2021 by comparing with the dataset from 2020

    Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week

    No full text
    Observations on human and experimental atherosclerosis, biomarker studies, and now a large-scale clinical trial support the operation of immune and inflammatory pathways in this disease. The factors that incite innate and adaptive immune responses implicated in atherogenesis and in lesion complication include traditional risk factors such as protein and lipid components of native and modified low-density lipoprotein, angiotensin II, smoking, visceral adipose tissue, and dysmetabolism. Infectious processes and products of the endogenous microbiome might also modulate atherosclerosis and its complications either directly, or indirectly by eliciting local and systemic responses that potentiate disease expression. Trials with antibiotics have not reduced recurrent cardiovascular events, nor have vaccination strategies yet achieved clinical translation. However, anti-inflammatory interventions such as anticytokine therapy and colchicine have begun to show efficacy in this regard. Thus, inflammatory and immune mechanisms can link traditional and emerging risk factors to atherosclerosis, and offer novel avenues for therapeutic intervention

    Obesity paradox in cancer: is bigger really better?

    Full text link
    While obesity is widely recognized as a risk factor for cancer, survival among patients with cancer is often higher for obese than for lean individuals. Several hypotheses have been proposed to explain this "obesity paradox," but no consensus has yet emerged. Here, we propose a novel hypothesis to add to this emerging debate which suggests that lean healthy persons present conditions unfavorable to malignant transformation, due to powerful natural defenses, whereby only rare but aggressive neoplasms can emerge and develop. In contrast, obese persons present more favorable conditions for malignant transformation, because of several weight-associated factors and less efficient natural defenses, leading to a larger quantity of neoplasms comprising both nonaggressive and aggressive ones to regularly emerge and progress. If our hypothesis is correct, testing would require the consideration of the raw quantity, not the relative frequency, of aggressive cancers in obese patients compared with lean ones. We also discuss the possibility that in obese persons, nonaggressive malignancies may prevent the subsequent progression of aggressive cancers through negative competitive interactions between tumors

    Development of a Personalized 3D Carotid Model for Cerebral Vasculopathy Monitoring in Sickle Cell Disease

    No full text
    Introduction Sickle cell disease (SCD) is the most prevalent and severe monogenic disorder due to a mutation in the b-globin gene, responsible for the production of an abnormal hemoglobin (HbS) which polymerizes under hypoxia. Cerebral vasculopathy (CV) generally appearing during childhood, is responsible for ischemic stroke, making SCD the first etiology of stroke in children and young adults. To date, several biological and hemodynamical determinants have been identified in CV development such as severe anemia and/or high intracranial vascular flow velocities (> 200 cm/s). Chronic blood exchange transfusion decreases the risk of stroke in children having a pathological Doppler. However some patients still have a progressive impairment despite conventional treatment highlighting the need for new therapeutic strategies and a better understanding of the physiopathology. Therefore, by developing a 3D carotid model reproducing exactly vascular parameters of a SCD patient, we aim to: (i) determine the mechanisms of CV development in SCD, (ii) find new therapeutic approaches and (iii) predict the risk of progression of CV. Materials and methods Three-dimensional reconstructions of the internal carotid, middle cerebral and anterior cerebral artery from SCD patients were generated from magnetic resonance angiograms (MIMICS & 3Matics software, Materialise). We performed 3D simulations of the Navier-Stokes equations in patient specific geometries, including the state-of-the-art techniques of Computational Hemodynamics (multiscale coupling, backflow stabilization - FeLiSCe software) and other factors - such as the increase of the ejection fraction or the drop of peripheral resistances). Blood viscosity was based on a SCD cohort. Hemodynamic properties such as flow velocities (TMMV) and wall shear stress (WSS) in different areas of modelled carotid were then computed according to flow variations. Modelled carotid was obtained by 3D printing according to computer design (CATIA software). The next steps will consist in 1/importing doppler parameters from patients in a programmable pump for flow assays with blood mimicking fluid to measure TMMV and WSS at different areas in carotid, 2/incorporating resting or activated platelets in BMF to evaluate impact of high WSS on platelets degranulation, 3/developing a flow co-culture of smooth muscle cells (SMCs) and human umbilical vein endothelial cells (HUVECs) on carotid wall. HUVECs and SMCs at different zones of the carotid undergoing high/low WSS and oscillatory flow will be analysed Preliminary results Our preliminary results suggest that the carotid inlet flow but not blood viscosity is responsible for the pathological intra cranial velocities (Figure 1A). At high carotid inlet flow, areas of high and low WSS appeared in children (Figure 1B), suggesting the existence of turbulent flow that could lead to arterial wall damages. Figure 2A shows a 3D printed carotid reproducing the exact SCD child's one. The material of artificial carotid is compatible with HUVECs culture (Figure 2B) and fluidic experiment at high inlet flow (Figure 2C). On Doppler ultrasonography, the velocities measured in different sections of carotid were comparable to patient's data and these velocities were modified according to variations of inlet flow values. Conclusions and perspectives By modification of input conditions, our 3D personalized model can predict high or low vascular velocities areas and will allow a better understanding of the pathophysiological processes involved at the interface between abnormal flow and cells on carotid wall. This innovative model could be a pertinent tool to evaluate individually effectiveness of new therapeutic strategies in SCD patients. Furthermore, this work may constitute a proof of concept that can be transposed to other diseases. Disclosures Verlhac: Addmedica, Paris: Other: Financial Support; Bluebird Bio: Consultancy. Bartolucci:AddMedica: Honoraria, Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; HEMANEXT: Membership on an entity's Board of Directors or advisory committees; Global Blood Therapeutics: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees

    Impact of age, sex, socioeconomic status, and physical activity on associated movements and motor speed in preschool children

    Full text link
    INTRODUCTION Young children generally show contralateral associated movements (CAMs) when they are making an effort to perform a unimanual task. CAM and motor speed are two relevant aspects of motor proficiency in young children. These CAMs decrease over age, while motor speed increases. As both CAM and motor speed are associated with age, we were interested in whether these two parameters are also linked with each other. METHOD In this study, three manual dexterity tasks with the dominant and nondominant hands (pegboard, repetitive hand, and repetitive finger tasks) were used to investigate the effect of covariates (age, sex, socioeconomic status, total physical activity) on both motor speed and CAMs in preschool children. RESULTS There was a significant age effect for both motor speed and CAMs in all tasks when the dominant hand was used. When the nondominant hand was used, the decrease in the intensity of CAMs over age was not consistently significant. The influence of physical activity and socioeconomic status on motor proficiency was small. Furthermore, the correlation between motor speed and CAMs, although significant, was low. CONCLUSIONS Motor speed improved with age over three fine motor tasks in preschool children. Decrease in CAMs was observed but it was not always significant when the nondominant hand was working. Motor speed and CAMs were only weakly associated. We conclude that the excitatory pathways responsible for motor speed and inhibitory pathways responsible for reducing CAMs occupy two different domains in the brain and therefore mostly behave independently of each other
    corecore