8 research outputs found
What can tell the quantum chemical topology on carbon–astatine bonds?
International audienceThe nature of carbon-astatine bonds involved in some model species that mimic 211 At-labelled biomolecules, was investigated by means of ELF and QTAIM analyzes in a context of two-component relativistic computations. The nature of the bonded carbon atom proved to be decisive. When At is bonded to an ethynyl group, some charge delocalization with the vicinal triple CC bond strengthens the At-C bond and gives it a multiple bond character. However, At displays also a large positive charge which may alter the in vivo stability of such At-C bonds. In the case of an isopropyl group, the At-C bond is less polarized but also much weaker. In contrast, the bond remains strong whilst retaining a small At positive charge when At is bonded to an sp 2 carbon atom. Hence, these latter results rationalize why aromatic or aryl groups appear reasonably suited for a priori stable radiolabelling of biomolecules with 211 At in the context of alpha therapy
Applications of the ELF and QTAIM topological analyses in a 2 components quasirelativistic context
Cette thèse traite de l'application des approches topologiques de la liaison chimique à des systèmes contenant des éléments lourds sujets aux effets relativistes, notamment ceux dépendant du spin. Elle présente deux volets principaux : (i) l'évaluation des effets du couplage spin-orbite (SO) sur la structure électronique à l'aide d'une analyse combinée des propriétés de la fonction ELF et de l'approche QTAIM en deux composantes et (ii) la rationalisation des distorsions structurales pour des molécules impliquant des éléments lourds et le rôle du couplage SO dans ces distorsions. Nous avons pu mettre en évidence différentes situations pour lesquelles le couplage SO peut avoir une influence très importante, modérée ou négligeable. Un résultat important de ce travail démontre la dépendance du couplage SO à son environnement chimique. Pour le second volet, nous avons élaboré une approche qui a consisté à établir une corrélation entre les interactions électrostatiques locales entre régions liantes et non liantes (bassins ELF et QTAIM) et la géométrie moléculaire du système dans l'esprit des modèles VSEPR et du Ligand Close Packing (LCP). Cette approche a notamment mis en évidence la connexion entre la structure moléculaire et les répulsions des paires non-liantes de l'atome central avec leur environnement.This thesis deals with the aplication of topological approaches of the chemical bonding by means of analysing properties of density-based functions like Electron Localization Function (ELF) and the Quantum Theory of Atoms in Molecumes (QTAIM) to systems involving heavy elements such as 6p elements or actinides . It is divided into two main parts: (i) the evaluation of the spin-orbit coupling (SOC) effects on the electronic structure by means of combination of the QTAIM and ELF topological analyses in the field of quasirelativistic quantum calculations, and (ii) the rationalization of structural distorsions on molecules containing heavy atoms, and the role of the SOC on these distorsions. We were able to emphasize different situations for which SOC has strong, moderate or tiny influence on the chemical bonding, depending on the chemical environnement on which the heavy element is involved. In the second part of this thesis we tested our approach consisting of ELF/QTAIM interbasin repulsion energy analysis in connection with the molecular geometry of the system, in the spirit of the VSEPR and LCP models
Applications des approches topologiques ELF et QTAIM dans un contexte quasirelativiste à 2 composantes
This thesis deals with the aplication of topological approaches of the chemical bonding by means of analysing properties of density-based functions like Electron Localization Function (ELF) and the Quantum Theory of Atoms in Molecumes (QTAIM) to systems involving heavy elements such as 6p elements or actinides . It is divided into two main parts: (i) the evaluation of the spin-orbit coupling (SOC) effects on the electronic structure by means of combination of the QTAIM and ELF topological analyses in the field of quasirelativistic quantum calculations, and (ii) the rationalization of structural distorsions on molecules containing heavy atoms, and the role of the SOC on these distorsions. We were able to emphasize different situations for which SOC has strong, moderate or tiny influence on the chemical bonding, depending on the chemical environnement on which the heavy element is involved. In the second part of this thesis we tested our approach consisting of ELF/QTAIM interbasin repulsion energy analysis in connection with the molecular geometry of the system, in the spirit of the VSEPR and LCP models.Cette thèse traite de l'application des approches topologiques de la liaison chimique à des systèmes contenant des éléments lourds sujets aux effets relativistes, notamment ceux dépendant du spin. Elle présente deux volets principaux : (i) l'évaluation des effets du couplage spin-orbite (SO) sur la structure électronique à l'aide d'une analyse combinée des propriétés de la fonction ELF et de l'approche QTAIM en deux composantes et (ii) la rationalisation des distorsions structurales pour des molécules impliquant des éléments lourds et le rôle du couplage SO dans ces distorsions. Nous avons pu mettre en évidence différentes situations pour lesquelles le couplage SO peut avoir une influence très importante, modérée ou négligeable. Un résultat important de ce travail démontre la dépendance du couplage SO à son environnement chimique. Pour le second volet, nous avons élaboré une approche qui a consisté à établir une corrélation entre les interactions électrostatiques locales entre régions liantes et non liantes (bassins ELF et QTAIM) et la géométrie moléculaire du système dans l'esprit des modèles VSEPR et du Ligand Close Packing (LCP). Cette approche a notamment mis en évidence la connexion entre la structure moléculaire et les répulsions des paires non-liantes de l'atome central avec leur environnement
Electronic structures and geometries of the XF<sub>3</sub> (X = Cl, Br, I, At) fluorides
International audienceThe potential energy surfaces of the group 17 XF3 (X = Cl, Br, I, At) fluorides have been investigated for the first time with multiconfigurational wave function theory approaches. In agreement with experiment, bent T-shaped C2v structures are computed for ClF3, BrF3 and IF3, while we predict that an average D3h structure would be experimentally observed for AtF3. Electron correlation and scalar relativistic effects strongly reduce the energy difference between the D3h geometry and the C2v one, along the XF3 series, and in the X = At case, spin-orbit coupling also slightly reduces this energy difference. AtF3 is a borderline system where the D3h structure becomes a minimum, i.e., the pseudo Jahn-Teller effect is inhibited since electron correlation and scalar-relativistic effects create small energy barriers leading to the global C2v minima, although both types of effects interfere
QTAIM Analysis in the Context of Quasirelativistic Quantum Calculations
International audienceComputational chemistry currently lacks ad hoc tools for probing the nature of chemical bonds in heavy and superheavy-atom systems where the consideration of spinorbit coupling (SOC) effects is mandatory. We report an implementation of the Quantum Theory of Atoms-In-Molecules in the framework of two-component relativistic calculations. Used in conjunction with the topological analysis of the Electron Localization Function, we show for astatine (At) species that SOC significantly lowers At electronegativity and boosts its propensity to make charge-shift bonds. Relativistic spin-dependent effects are furthermore able to change some bonds from mainly covalent to charge-shift type. The implication of the disclosed features regarding the rationalization of the labeling protocols used in nuclear medicine for At-211 radioisotope nicely illustrates the potential of the introduced methodology for investigating the chemistry of (super)heavy elements
The bonding picture in hypervalent XF<sub>3</sub> (X = Cl, Br, I, At) fluorides revisited with quantum chemical topology
International audienc
QTAIM Analysis in the Context of Quasirelativistic Quantum Calculations
Computational
chemistry currently lacks ad hoc tools for probing
the nature of chemical bonds in heavy and superheavy-atom systems
where the consideration of spin–orbit coupling (SOC) effects
is mandatory. We report an implementation of the Quantum Theory of
Atoms-In-Molecules in the framework of two-component relativistic
calculations. Used in conjunction with the topological analysis of
the Electron Localization Function, we show for astatine (At) species
that SOC significantly lowers At electronegativity and boosts its
propensity to make charge-shift bonds. Relativistic spin-dependent
effects are furthermore able to change some bonds from mainly covalent
to charge-shift type. The implication of the disclosed features regarding
the rationalization of the labeling protocols used in nuclear medicine
for <sup>211</sup>At radioisotope nicely illustrates the potential
of the introduced methodology for investigating the chemistry of (super)heavy
elements