138 research outputs found

    CD107a(+) (LAMP-1) Cytotoxic CD8(+) T-Cells in Lupus Nephritis Patients

    Get PDF
    Cytotoxic CD8(+) T-cells play a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). The aim of this study was to investigate the role of CD107a (LAMP-1) on cytotoxic CD8(+) T-cells in SLE-patients in particular with lupus nephritis. Peripheral blood of SLE-patients (n = 31) and healthy controls (n = 21) was analyzed for the expression of CD314 and CD107a by flow cytometry. Kidney biopsies of lupus nephritis patients were investigated for the presence of CD8(+) and C107a(+) cells by immunohistochemistry and immunofluorescence staining. The percentages of CD107a(+) on CD8(+) T-cells were significantly decreased in SLE-patients as compared to healthy controls (40.2 +/- 18.5% vs. 47.9 +/- 15.0%, p = 0.02). This was even more significant in SLE-patients with inactive disease. There was a significant correlation between the percentages of CD107a(+)CD8(+) T-cells and SLEDAI. The evaluation of lupus nephritis biopsies showed a significant number of CD107a(+)CD8(+) T-cells mainly located in the peritubular infiltrates. The intrarenal expression of CD107a(+) was significantly correlated with proteinuria. These results demonstrate that CD8(+) T-cells of patients with systemic lupus erythematosus have an altered expression of CD107a which seems to be associated with disease activity. The proof of intrarenal CD107a(+)CD8(+) suggests a role in the pathogenesis of lupus nephritis

    Graphical representation of ribosomal RNA probe accessibility data using ARB software package

    Get PDF
    BACKGROUND: Taxon specific hybridization probes in combination with a variety of commonly used hybridization formats nowadays are standard tools in microbial identification. A frequently applied technology, fluorescence in situ hybridization (FISH), besides single cell identification, allows the localization and functional studies of the microbial community composition. Careful in silico design and evaluation of potential oligonucleotide probe targets is therefore crucial for performing successful hybridization experiments. RESULTS: The PROBE Design tools of the ARB software package take into consideration several criteria such as number, position and quality of diagnostic sequence differences while designing oligonucleotide probes. Additionally, new visualization tools were developed to enable the user to easily examine further sequence associated criteria such as higher order structure, conservation, G+C content, transition-transversion profiles and in situ target accessibility patterns. The different types of sequence associated information (SAI) can be visualized by user defined background colors within the ARB primary and secondary structure editors as well as in the PROBE Match tool. CONCLUSION: Using this tool, in silico probe design and evaluation can be performed with respect to in situ probe accessibility data. The evaluation of proposed probe targets with respect to higher-order rRNA structure is of importance for successful design and performance of in situ hybridization experiments. The entire ARB software package along with the probe accessibility data is available from the ARB home page

    Using Collaborative Immersive Environments and Building Information Modeling Technology for Holistic Planning of Production Lines

    Get PDF
    Large and complex building projects need many different experts from different engineering disciplines for different matters. But these experts each use their own IT tools that produce a lot of heterogeneous data. This leads to a strong fragmentation of competencies, what causes problems for interdisciplinary collaboration, because the data might be inconsistent, redundant or there are no interfaces to combine the data. These problems in collaboration increase the risk of planning mistakes that might significantly impair the overall project success. So only one database should be used for all engineering tasks to improve the transdisciplinary collaboration. The Building Information Modelling (BIM) working methodology enables the digital collaboration of virtual production planning and architecture tasks for developing a building. By means of lean optimization in combination with early integration of future-oriented production facilities, process-relevant production data can be included in the planning phase before construction begins. This article presents a real time immersive 3D virtualization system using the digital twin of complex buildings with a modern production line as the single source of truth and creates a consistent integrated data model, that enables transdisciplinary collaboration of all involved engineering disciplines. In this way, a continuous comparison can be made between the real construction project and its digital twin in an interactive, intuitive and collaborative manner. The same model is also used by production planners to optimize the material flow and in general the value chain of a production line through a holistic planning, which brings many benefits for all stakeholders

    Emulating a target trial of proton pump inhibitors and dementia risk using claims data

    Get PDF
    Background and purpose Understanding the adverse effects of proton pump inhibitors (PPIs) is important due to their widespread use, but the available evidence for an increased dementia risk amongst patients taking PPIs is inconclusive. The present study aimed to estimate the causal effect of PPIs on the risk of dementia by target trial emulation and time-varying exposure modeling. Methods Using claims data of 2,698,176 insured people of a large German statutory health insurer, a target trial was conceptualized in which individuals aged 40 years and older were classified as PPI initiators or non-initiators between 2008 and 2018, and were followed until diagnosis of dementia, death, loss to follow-up or end of study. Incidence of dementia (International Classification of Diseases 10 codes F00, F01, F03, F05.1, G30, G31.0, G31.1, G31.9 and F02.8+G31.82) was defined applying a 1-year lag window. Weighted Cox models were used to estimate the effect of PPI initiation versus non-initiation on dementia risk and weighted pooled logistic regression was used to estimate the effect of time-varying use versus non-use. Results In all, 29,746 PPI initiators (4.4%) and 26,830 non-initiators (1.3%) were diagnosed with dementia. Comparing PPI initiation with no initiation, the hazard ratio for dementia was 1.54 (95% confidence interval 1.51-1.58). The hazard ratio for time-dependent PPI use versus non-use was 1.56 (95% confidence interval 1.50-1.63). Differentiated subtypes, including unspecified dementia, Alzheimer's disease and vascular dementia, showed increased risk by PPI initiation and time-varying PPI use. Conclusions This study suggests that PPI initiation and time-varying PPI use may increase overall dementia risk

    Lack of association between proton pump inhibitor use and brain aging: a cross-sectional study

    Get PDF
    PURPOSE Due to conflicting scientific evidence for an increased risk of dementia by intake of proton pump inhibitors (PPIs), this study investigates associations between PPI use and brain volumes, estimated brain age, and cognitive function in the general population. METHODS Two surveys of the population-based Study of Health in Pomerania (SHIP) conducted in Northeast Germany were used. In total, 2653 participants underwent brain magnetic resonance imaging (MRI) and were included in the primary analysis. They were divided into two groups according to their PPI intake and compared with regard to their brain volumes (gray matter, white matter, total brain, and hippocampus) and estimated brain age. Multiple regression was used to adjust for confounding factors. Cognitive function was evaluated by the Verbal Learning and Memory Test (VLMT) and the Nuremberg Age Inventory (NAI) and put in relation to PPI use. RESULTS No association was found between PPI use and brain volumes or the estimated brain age. The VLMT score was 1.11 lower (95% confidence interval: - 2.06 to - 0.16) in immediate recall, and 0.72 lower (95% CI: - 1.22 to - 0.22) in delayed recall in PPI users than in non-users. PPI use was unrelated to the NAI score. CONCLUSIONS The present study does not support a relationship between PPI use and brain aging

    Tracking cell turnover in human brain using 15N-thymidine imaging mass spectrometry

    Get PDF
    Microcephaly is often caused by an impairment of the generation of neurons in the brain, a process referred to as neurogenesis. While most neurogenesis in mammals occurs during brain development, it thought to continue to take place through adulthood in selected regions of the mammalian brain, notably the hippocampus. However, the generality of neurogenesis in the adult brain has been controversial. While studies in mice and rats have provided compelling evidence for neurogenesis occurring in the adult rodent hippocampus, the lack of applicability in humans of key methods to demonstrate neurogenesis has led to an intense debate about the existence and, in particular, the magnitude of neurogenesis in the adult human brain. Here, we demonstrate the applicability of a powerful method to address this debate, that is, the in vivo labeling of adult human patients with 15N-thymidine, a non-hazardous form of thymidine, an approach without any clinical harm or ethical concerns. 15N-thymidine incorporation into newly synthesized DNA of specific cells was quantified at the single-cell level with subcellular resolution by Multiple-isotype imaging mass spectrometry (MIMS) of brain tissue resected for medical reasons. Two adult human patients, a glioblastoma patient and a patient with drug-refractory right temporal lobe epilepsy, were infused for 24 h with 15N-thymidine. Detection of 15N-positive leukocyte nuclei in blood samples from these patients confirmed previous findings by others and demonstrated the appropriateness of this approach to search for the generation of new cells in the adult human brain. 15N-positive neural cells were easily identified in the glioblastoma tissue sample, and the range of the 15N signal suggested that cells that underwent S-phase fully or partially during the 24 h in vivo labeling period, as well as cells generated therefrom, were detected. In contrast, within the hippocampus tissue resected from the epilepsy patient, none of the 2,000 dentate gyrus neurons analyzed was positive for 15N-thymidine uptake, consistent with the notion that the rate of neurogenesis in the adult human hippocampus is rather low. Of note, the likelihood of detecting neurogenesis was reduced because of (i) the low number of cells analyzed, (ii) the fact that hippocampal tissue was explored that may have had reduced neurogenesis due to epilepsy, and (iii) the labeling period of 24 h which may have been too short to capture quiescent neural stem cells. Yet, overall, our approach to enrich NeuN-labeled neuronal nuclei by FACS prior to MIMS analysis provides a promising strategy to quantify even low rates of neurogenesis in the adult human hippocampus after in vivo15N-thymidine infusion. From a general point of view and regarding future perspectives, the in vivo labeling of humans with 15N-thymidine followed by MIMS analysis of brain tissue constitutes a novel approach to study mitotically active cells and their progeny in the brain, and thus allows a broad spectrum of studies of brain physiology and pathology, including microcephaly

    Renal tubular HIF-2α expression requires VHL inactivation and causes fibrosis and cysts.

    Get PDF
    The Hypoxia-inducible transcription Factor (HIF) represents an important adaptive mechanism under hypoxia, whereas sustained activation may also have deleterious effects. HIF activity is determined by the oxygen regulated α-subunits HIF-1α or HIF-2α. Both are regulated by oxygen dependent degradation, which is controlled by the tumor suppressor "von Hippel-Lindau" (VHL), the gatekeeper of renal tubular growth control. HIF appears to play a particular role for the kidney, where renal EPO production, organ preservation from ischemia-reperfusion injury and renal tumorigenesis are prominent examples. Whereas HIF-1α is inducible in physiological renal mouse, rat and human tubular epithelia, HIF-2α is never detected in these cells, in any species. In contrast, distinct early lesions of biallelic VHL inactivation in kidneys of the hereditary VHL syndrome show strong HIF-2α expression. Furthermore, knockout of VHL in the mouse tubular apparatus enables HIF-2α expression. Continuous transgenic expression of HIF-2α by the Ksp-Cadherin promotor leads to renal fibrosis and insufficiency, next to multiple renal cysts. In conclusion, VHL appears to specifically repress HIF-2α in renal epithelia. Unphysiological expression of HIF-2α in tubular epithelia has deleterious effects. Our data are compatible with dedifferentiation of renal epithelial cells by sustained HIF-2α expression. However, HIF-2α overexpression alone is insufficient to induce tumors. Thus, our data bear implications for renal tumorigenesis, epithelial differentiation and renal repair mechanisms

    Epithelial RAC1-dependent cytoskeleton dynamics controls cell mechanics, cell shedding and barrier integrity in intestinal inflammation

    Get PDF
    Objective: Increased apoptotic shedding has been linked to intestinal barrier dysfunction and development of inflammatory bowel diseases (IBD). In contrast, physiological cell shedding allows the renewal of the epithelial monolayer without compromising the barrier function. Here, we investigated the role of live cell extrusion in epithelial barrier alterations in IBD. Design: Taking advantage of conditional GGTase and RAC1 knockout mice in intestinal epithelial cells (Pggt1biΔIEC and Rac1iΔIEC mice), intravital microscopy, immunostaining, mechanobiology, organoid techniques and RNA sequencing, we analysed cell shedding alterations within the intestinal epithelium. Moreover, we examined human gut tissue and intestinal organoids from patients with IBD for cell shedding alterations and RAC1 function. Results: Epithelial Pggt1b deletion led to cytoskeleton rearrangement and tight junction redistribution, causing cell overcrowding due to arresting of cell shedding that finally resulted in epithelial leakage and spontaneous mucosal inflammation in the small and to a lesser extent in the large intestine. Both in vivo and in vitro studies (knockout mice, organoids) identified RAC1 as a GGTase target critically involved in prenylation-dependent cytoskeleton dynamics, cell mechanics and epithelial cell shedding. Moreover, inflamed areas of gut tissue from patients with IBD exhibited funnel-like structures, signs of arrested cell shedding and impaired RAC1 function. RAC1 inhibition in human intestinal organoids caused actin alterations compatible with arresting of cell shedding. Conclusion: Impaired epithelial RAC1 function causes cell overcrowding and epithelial leakage thus inducing chronic intestinal inflammation. Epithelial RAC1 emerges as key regulator of cytoskeletal dynamics, cell mechanics and intestinal cell shedding. Modulation of RAC1 might be exploited for restoration of epithelial integrity in the gut of patients with IBD
    corecore