4 research outputs found

    Single-cell internalization during zebrafish gastrulation

    Get PDF
    AbstractDuring gastrulation, germ layers are formed as prospective mesodermal and endodermal cells internalize and come to underlie the ectoderm [1–9]. Despite the pivotal role of gastrulation in animal development, the cellular interactions underlying this process are poorly understood. In zebrafish, mesoderm and endoderm formation requires the Nodal signals Cyclops and Squint and their cofactor One-eyed pinhead (Oep) [10–14]. We found that marginal cells in maternal-zygotic oep (MZoep) mutants do not internalize during gastrulation and acquire neural and tail fates at the expense of head and trunk mesendoderm. The lack of internalization in MZoep embryos and the cell-autonomous requirement for oep in Nodal signaling enabled us to test whether internalization can be achieved by individual cells or whether it depends on interactions within a group of cells. We found that individual MZoep mutant cells transplanted to the margin of wild-type blastula embryos initially internalize with their neighbors but are unable to contribute to the mesendoderm. In the reciprocal experiment, single wild-type cells transplanted to the margin of MZoep mutant embryos autonomously internalize and can express the mesendodermal markers axial/foxA2 and sox17. These results suggest that internalization and mesendoderm formation in zebrafish can be attained autonomously by single cells

    Generating chimeric zebrafish embryos by transplantation.

    Get PDF
    One of the most powerful tools used to gain insight into complex developmental processes is the analysis of chimeric embryos. A chimera is defined as an organism that contains cells from more than one animal; mosaics are one type of chimera in which cells from more than one genotype are mixed, usually wild-type and mutant. In the zebrafish, chimeras can be readily made by transplantation of cells from a donor embryo into a host embryo at the appropriate embryonic stage. Labeled donor cells are generated by injection of a lineage marker, such as a fluorescent dye, into the one-cell stage embryo. Labeled donor cells are removed from donor embryos and introduced into unlabeled host embryos using an oil-controlled glass pipette mounted on either a compound or dissecting microscope. Donor cells can in some cases be targeted to a specific region or tissue of the developing blastula or gastrula stage host embryo by choosing a transplantation site in the host embryo based on well-established fate maps

    Stat3 Controls Cell Movements during Zebrafish Gastrulation

    No full text
    Vertebrate axis formation requires both the correct specification of cell fates and the coordination of gastrulation movements. We report that the zebrafish signal transducer and activator of transcription 3 (Stat3) is activated on the dorsal side by the maternal Wnt/beta-catenin pathway. Zebrafish embryos lacking Stat3 activity display abnormal cell movements during gastrulation, resulting in a mispositioned head and a shortened anterior-posterior axis, but show no defects in early cell fate specification. Time course analysis, cell tracing, and transplantation experiments revealed that Stat3 activity is required cell autonomously for the anterior migration of dorsal mesendodermal cells and non-cell autonomously for the convergence of neighboring paraxial cells. These results reveal a role for Stat3 in controlling cell movements during gastrulation
    corecore