252 research outputs found

    Thyroid hormone regulates distinct paths to maturation in pigment cell lineages

    Get PDF
    Thyroid hormone (TH) regulates diverse developmental events and can drive disparate cellular outcomes. In zebrafish, TH has opposite effects on neural crest derived pigment cells of the adult stripe pattern, limiting melanophore population expansion, yet increasing yellow/orange xanthophore numbers. To learn how TH elicits seemingly opposite responses in cells having a common embryological origin, we analyzed individual transcriptomes from thousands of neural crest-derived cells, reconstructed developmental trajectories, identified pigment cell-lineage specific responses to TH, and assessed roles for TH receptors. We show that TH promotes maturation of both cell types but in distinct ways. In melanophores, TH drives terminal differentiation, limiting final cell numbers. In xanthophores, TH promotes accumulation of orange carotenoids, making the cells visible. TH receptors act primarily to repress these programs when TH is limiting. Our findings show how a single endocrine factor integrates very different cellular activities during the generation of adult form

    Spinal neuromodulation mitigates myocardial ischemia-induced sympathoexcitation by suppressing the intermediolateral nucleus hyperactivity and spinal neural synchrony

    Get PDF
    IntroductionMyocardial ischemia disrupts the cardio-spinal neural network that controls the cardiac sympathetic preganglionic neurons, leading to sympathoexcitation and ventricular tachyarrhythmias (VTs). Spinal cord stimulation (SCS) is capable of suppressing the sympathoexcitation caused by myocardial ischemia. However, how SCS modulates the spinal neural network is not fully known.MethodsIn this pre-clinical study, we investigated the impact of SCS on the spinal neural network in mitigating myocardial ischemia-induced sympathoexcitation and arrhythmogenicity. Ten Yorkshire pigs with left circumflex coronary artery (LCX) occlusion-induced chronic myocardial infarction (MI) were anesthetized and underwent laminectomy and a sternotomy at 4−5 weeks post-MI. The activation recovery interval (ARI) and dispersion of repolarization (DOR) were analyzed to evaluate the extent of sympathoexcitation and arrhythmogenicity during the left anterior descending coronary artery (LAD) ischemia. Extracellular in vivo and in situ spinal dorsal horn (DH) and intermediolateral column (IML) neural recordings were performed using a multichannel microelectrode array inserted at the T2-T3 segment of the spinal cord. SCS was performed for 30 min at 1 kHz, 0.03 ms, 90% motor threshold. LAD ischemia was induced pre- and 1 min post-SCS to investigate how SCS modulates spinal neural network processing of myocardial ischemia. DH and IML neural interactions, including neuronal synchrony as well as cardiac sympathoexcitation and arrhythmogenicity markers were evaluated during myocardial ischemia pre- vs. post-SCS.ResultsARI shortening in the ischemic region and global DOR augmentation due to LAD ischemia was mitigated by SCS. Neural firing response of ischemia-sensitive neurons during LAD ischemia and reperfusion was blunted by SCS. Further, SCS showed a similar effect in suppressing the firing response of IML and DH neurons during LAD ischemia. SCS exhibited a similar suppressive impact on the mechanical, nociceptive and multimodal ischemia sensitive neurons. The LAD ischemia and reperfusion-induced augmentation in neuronal synchrony between DH-DH and DH-IML pairs of neurons were mitigated by the SCS.DiscussionThese results suggest that SCS is decreasing the sympathoexcitation and arrhythmogenicity by suppressing the interactions between the spinal DH and IML neurons and activity of IML preganglionic sympathetic neurons

    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data

    Get PDF
    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype

    Developing a utility index for the Aberrant Behavior Checklist (ABC-C) for fragile X syndrome

    Get PDF
    Purpose This study aimed to develop a utility index (the ABC-UI) from the Aberrant Behavior Checklist-Community (ABC-C), for use in quantifying the benefit of emerging treatments for fragile X syndrome (FXS). Methods The ABC-C is a proxy-completed assessment of behaviour and is a widely used measure in FXS. A subset of ABC-C items across seven dimensions was identified to include in health state descriptions. This item reduction process was based on item performance, factor analysis and Rasch analysis performed on an observational study dataset, and consultation with five clinical experts and a methodological expert. Dimensions were combined into health states using an orthogonal design and valued using time trade-off (TTO), with lead-time TTO methods used where TTO indicated a state valued as worse than dead. Preference weights were estimated using mean, individual level, ordinary least squares and random-effects maximum likelihood estimation [RE (MLE)] regression models. Results A representative sample of the UK general public (n = 349; mean age 35.8 years, 58.2 % female) each valued 12 health states. Mean observed values ranged from 0.92 to 0.16 for best to worst health states. The RE (MLE) model performed best based on number of significant coefficients and mean absolute error of 0.018. Mean utilities predicted by the model covered a similar range to that observed. Conclusions The ABC-UI estimates a wide range of utilities from patient-level FXS ABC-C data, allowing estimation of FXS health-related quality of life impact for economic evaluation from an established FXS clinical trial instrument

    Genetic dysregulation of endothelin-1 is implicated in coronary microvascular dysfunction.

    Get PDF
    AIMS: Endothelin-1 (ET-1) is a potent vasoconstrictor peptide linked to vascular diseases through a common intronic gene enhancer [(rs9349379-G allele), chromosome 6 (PHACTR1/EDN1)]. We performed a multimodality investigation into the role of ET-1 and this gene variant in the pathogenesis of coronary microvascular dysfunction (CMD) in patients with symptoms and/or signs of ischaemia but no obstructive coronary artery disease (CAD). METHODS AND RESULTS: Three hundred and ninety-one patients with angina were enrolled. Of these, 206 (53%) with obstructive CAD were excluded leaving 185 (47%) eligible. One hundred and nine (72%) of 151 subjects who underwent invasive testing had objective evidence of CMD (COVADIS criteria). rs9349379-G allele frequency was greater than in contemporary reference genome bank control subjects [allele frequency 46% (129/280 alleles) vs. 39% (5551/14380); P = 0.013]. The G allele was associated with higher plasma serum ET-1 [least squares mean 1.59 pg/mL vs. 1.28 pg/mL; 95% confidence interval (CI) 0.10-0.53; P = 0.005]. Patients with rs9349379-G allele had over double the odds of CMD [odds ratio (OR) 2.33, 95% CI 1.10-4.96; P = 0.027]. Multimodality non-invasive testing confirmed the G allele was associated with linked impairments in myocardial perfusion on stress cardiac magnetic resonance imaging at 1.5 T (N = 107; GG 56%, AG 43%, AA 31%, P = 0.042) and exercise testing (N = 87; -3.0 units in Duke Exercise Treadmill Score; -5.8 to -0.1; P = 0.045). Endothelin-1 related vascular mechanisms were assessed ex vivo using wire myography with endothelin A receptor (ETA) antagonists including zibotentan. Subjects with rs9349379-G allele had preserved peripheral small vessel reactivity to ET-1 with high affinity of ETA antagonists. Zibotentan reversed ET-1-induced vasoconstriction independently of G allele status. CONCLUSION: We identify a novel genetic risk locus for CMD. These findings implicate ET-1 dysregulation and support the possibility of precision medicine using genetics to target oral ETA antagonist therapy in patients with microvascular angina. TRIAL REGISTRATION: ClinicalTrials.gov: NCT03193294.The Wellcome Trust 107715/Z/15/Z

    Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development.

    Get PDF
    Some neuropsychiatric disease, including schizophrenia, may originate during prenatal development, following periods of gestational hypoxia and placental oxidative stress. Here we investigated if gestational hypoxia promotes damaging secretions from the placenta that affect fetal development and whether a mitochondria-targeted antioxidant MitoQ might prevent this. Gestational hypoxia caused low birth-weight and changes in young adult offspring brain, mimicking those in human neuropsychiatric disease. Exposure of cultured neurons to fetal plasma or to secretions from the placenta or from model trophoblast barriers that had been exposed to altered oxygenation caused similar morphological changes. The secretions and plasma contained altered microRNAs whose targets were linked with changes in gene expression in the fetal brain and with human schizophrenia loci. Molecular and morphological changes in vivo and in vitro were prevented by a single dose of MitoQ bound to nanoparticles, which were shown to localise and prevent oxidative stress in the placenta but not in the fetus. We suggest the possibility of developing preventative treatments that target the placenta and not the fetus to reduce risk of psychiatric disease in later life

    AMPK Modulation Ameliorates Dominant Disease Phenotypes of CTRP5 Variant in Retinal Degeneration

    Get PDF
    Late-onset retinal degeneration (L-ORD) is an autosomal dominant disorder caused by a missense substitution in CTRP5. Distinctive clinical features include sub-retinal pigment epithelium (RPE) deposits, choroidal neovascularization, and RPE atrophy. In induced pluripotent stem cells-derived RPE from L-ORD patients (L-ORD-iRPE), we show that the dominant pathogenic CTRP5 variant leads to reduced CTRP5 secretion. In silico modeling suggests lower binding of mutant CTRP5 to adiponectin receptor 1 (ADIPOR1). Downstream of ADIPOR1 sustained activation of AMPK renders it insensitive to changes in AMP/ATP ratio resulting in defective lipid metabolism, reduced Neuroprotectin D1(NPD1) secretion, lower mitochondrial respiration, and reduced ATP production. These metabolic defects result in accumulation of sub-RPE deposits and leave L-ORD-iRPE susceptible to dedifferentiation. Gene augmentation of L-ORD-iRPE with WT CTRP5 or modulation of AMPK, by metformin, re-sensitize L-ORD-iRPE to changes in cellular energy status alleviating the disease cellular phenotypes. Our data suggests a mechanism for the dominant behavior of CTRP5 mutation and provides potential treatment strategies for L-ORD patients. © 2021, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

    Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation
    corecore