15 research outputs found

    New Genetic Insights into Pearl Millet Diversity As Revealed by Characterization of Early- and Late-Flowering Landraces from Senegal

    Get PDF
    Pearl millet (Pennisetum glaucum (L.) R. Br.) is a staple food and a drought-tolerant cereal well adapted to Sub-Saharan Africa agro-ecosystems. An important diversity of pearl millet landraces has been widely conserved by farmers and therefore could help copping with climate changes and contribute to future food security. Hence, characterizing its genetic diversity and population structure can contribute to better assist breeding programs for a sustainable agricultural productivity enhancement. Toward this goal, a comprehensive panel of 404 accessions were used that correspond to 12 improved varieties, 306 early flowering and 86 late-flowering cultivated landraces from Senegal. Twelve highly polymorphic SSR markers were used to study diversity and population structure. Two genes, PgMADS11 and PgPHYC, were genotyped to assess their association to flowering phenotypic difference in landraces. Results indicate a large diversity and untapped potential of Senegalese pearl millet germplasm as well as a genetic differentiation between early- and late-flowering landraces. Further, a fine-scale genetic difference of PgPHYC and PgMADS11 (SNP and indel, respectively) and co-variation of their alleles with flowering time were found among landraces. These findings highlight new genetic insights of pearl millet useful to define heterotic populations for breeding, genomic association panel, or crosses for trait-specific mapping

    Potential contribution of climate conditions on COVID-19 pandemic transmission over West and North African countries

    Get PDF
    COVID-19, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is a very contagious disease that has killed many people worldwide. According to data from the World Health Organization (WHO), the spread of the disease appears to be slower in Africa. Although several studies have been published on the relationship between meteorological parameters and COVID-19 transmission, the effects of climate conditions on COVID-19 remain largely unexplored and without consensus. However, the transmission of COVID-19 and sensitivity to climate conditions are also not fully understood in Africa. Here, using available epidemiological data over 275 days (i.e., from 1 March to 30 November 2020) taken from the European Center for Disease Prevention and Control of the European Union database and daily data of surface air temperature specific humidity and water vapor from the National Center for Environmental Prediction (NCEP), this paper investigates the potential contribution of climate conditions on COVID-19 transmission over 16 selected countries throughout three climatic regions of Africa (i.e., Sahel, Maghreb, and Gulf of Guinea). The results highlight statistically significant inverse correlations between COVID-19 cases and temperature over the Maghreb and the Gulf of Guinea regions. In contrast, positive correlations are found over the Sahel area, especially in the central part, including Niger and Mali. Correlations with specific humidity and water vapor parameters display significant and positive values over the Sahelian and the Gulf of Guinea countries and negative values over the Maghreb countries. Then, the COVID-19 pandemic transmission is influenced differently across the three climatic regions: (i) cold and dry environmental conditions over the Maghreb; (ii) warm and humid conditions over the Sahel; and (iii) cold and humid conditions over the Gulf of Guinea. In addition, for all three climatic regions, even though the climate impact has been found to be significant, its effect appears to display a secondary role based on the explanatory power variance compared to non-climatic factors assumed to be dominated by socio-economic factors and early strong public health measures
    corecore