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Abstract. Malaria is a major public health problem in West Africa. Previous studies have shown that climate vari-
ability significantly affectsmalaria transmission. The lackof continuousobservedweather station data and the absence
of surveillance data for malaria over long periods have led to the use of reanalysis data to drive malaria models. In this
study, we use the Liverpool Malaria Model (LMM) to simulate spatiotemporal variability of malaria in West Africa using
daily rainfall and temperature from the following: Twentieth Century Reanalysis (20th CR), National Center for Envi-
ronmental Prediction (NCEP), European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric Re-
analysis of the TwentiethCentury (ERA20C), and interimECMWFRe-Analysis (ERA-Interim).Malaria case data from the
national surveillance program in Senegal are used for model validation between 2001 and 2016. The warm tempera-
tures found over the Sahelian fringe of West Africa can lead to high malaria transmission during wet years. The rainfall
season peaks in July to September over West Africa and Senegal, and the malaria season lasts from September to
November, about 1–2months after the rainfall peak. The long-term trends exhibit interannual and decadal variabilities.
The LMM shows acceptable performance in simulating the spatial distribution of malaria incidence. However, some
discrepancies are found. These results are useful for decision-makers who plan public health and control measures in
affected West African countries. The study would have substantial implications for directing malaria surveillance
activities and health policy. In addition, this malaria modeling framework could lead to the development of an early
warning system for malaria in West Africa.

INTRODUCTION

Malaria is a climate-sensitive vector-borne disease. Pres-
ently, 90% of malaria deaths are reported in Africa, and the
largest outbreaks tend to occur in sub-Saharan Africa.1–5 In
Senegal, malaria represents more than 5% of consultations
in health services, with a mortality rate of about 7%.6,7 In-
teractions among the mosquito vector, the Plasmodium
parasite, and the human host are conditioned by suitable
climate conditions. Although climate is not the leading driver
affecting the geographic distribution and epidemiology of
malaria,8–11 it influences malaria through different pathways.
Temperature influences the development and mortality of
the Anopheles vectors and their biting rates.12 Rainfall cre-
ates breeding sites for the larval stage of themosquito vector
development.13–15 In addition, higher temperatures, espe-
cially in the 18–32�C range, tend to increase malaria trans-
mission as it accelerates the life cycle of Anopheles vectors
(gonotrophic cycle, i.e., egg laying frequency and their de-
velopment rate) and reduces the length of the sporogonic
cycle inside female Anopheles mosquitoes. As an example,
the common form of the tropical parasite, Plasmodium fal-
ciparum, has an 18�C minimum threshold to develop in the
vector.16,17 To a lesser extent, humidity is an important pa-
rameter that influences malaria transmission as well. Hu-
midity equal or greater than 60% increases mosquito
survival.18 The frequency and intensity of precipitation are

crucial factors that create breeding sites for mosquitoes,
and, consequently, modulate peaks in vector abundance.19

The seasonal transmission risk of malaria is modulated
by seasonal rainfall, related to monsoon systems in the
Tropics.20 Years with heavy rainfall are often related to
larger-than-average malaria burden; for example, floods can
hamper vector control measures in place by destroying
health infrastructures in the region.21 However, excessive
rainfall can also flush mosquito larvae sites, leading to de-
creased malaria risk.22 In addition, some Anopheles mos-
quitoes prefer clear or shaded water, whereas others prefer
brackish or salty water.23–26 Therefore, consequently, cli-
mate change might alter the global distribution of malaria in
the future.27 The severe drought that took place over the
Sahel during the 1970s and 1980s28–30 led to a reduction in
the distribution and abundance of Anopheles vectors,31,32

but, surprisingly, the associated reduction of mosquito
vectors did not necessarily lead to a drastic reduction in
malaria cases and deaths. The growing resistance of mos-
quito vectors to insecticides, which are commonly used in
insecticide-treated bed nets (ITNs) and indoor residual
spraying, increasingly put pressure on malaria control mea-
sures.33 However, the susceptibility of vulnerable pop-
ulations with no or altered immunity to infection, such as
young children and pregnant women, is an important factor
as well.34–39 Epidemics can arise in the case of extreme cli-
mate events including floods associated with extreme rain-
fall events, in such nonexposed population, that is, naive
population.21,40,41 The inconsistency between drought
conditions and increased malaria transmission during the
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1970s encouraged scientists to monitor and study the evo-
lution of mosquito vectors in Senegal.42 Several studies
conclude that the large malaria transmission observed dur-
ing the Sahel drought was related to an increased number of
vulnerable individuals and increased drug resistance of
certain malaria vectors.43–45

Access to long time series of clinical malaria data cover-
ing a large geographical domain, for example, for the whole
ofWest Africa, is very difficult. Climate reanalysis provides a
unique opportunity to investigate the evolution of global
climate variables along time. Reanalysis data can be used to
drive malaria models with the aim of obtaining longer time
series of simulated malaria parameters, over a continuous
spatial grid. Previous studies have used reanalysis data to
drive mathematical malaria models and investigate the
variability of malaria parameters at regional and national
scales.46 For example, simulated malaria incidence driven
by daily weather station data were validated against malaria
clinical data obtained from medical centers in Senegal.47,48

In this study, we now extend the methodology to the whole
West African region, to explore seasonal and long-term
trends in simulated malaria burden. Malaria model outputs
are also compared with recent observation datasets from
Senegal for validation purposes.

DATA AND METHODS

Our area of study, West Africa, is shown in Figure 1.
The Liverpool Malaria Model (LLM). The LMM is a dy-

namicalmalariamodel drivenbydaily timeseriesof rainfall and
temperature.

The various components of the malaria transmission
model and the model parameter settings are described
by Hoshen and Morse.49 The LMM is a mathematical–
biological model of parasite dynamics, which comprises the
weather-dependent within-vector stages and the weather-
independentwithin-host stages. Themosquito population is
simulated using larval and adult stages, with the number of
eggs deposited into breeding sites and the larval mortality
rate depending on the previous 10 days’ rainfall. The adult
mosquito mortality rate and the egg-laying/biting cycle (the
so-called gonotrophic cycle) also depend on temperature.
The process of parasite transmission between humans and
mosquitoes is modeled with temperature dependencies for
the replication rate of the parasite within the mosquito
(sporogonic cycle) and themosquito biting rate. Both cycles
evolve as a function of the number of “degree days” above a
specific temperature threshold. The gonotrophic and the
sporogonic cycles take, respectively, 37 and 111 degree
days with thresholds of 9�C and 18�C.50 The model does
not simulate host immunity. The LMM is very sensitive to
the climate data inputs and the disease model parameteri-
zation. Studies on climate and health have used LMM sim-
ulations in southern Africa, including Zimbabwe, Botswana,
and for the whole African continent.47,51 The LMM version
2010 is used in this study.52 The malaria model outputs in-
clude incidence which is used in this study; it is defined by
the number of infected cases in 100 people.
Surveillance malaria data for Senegal. The data used for

validation over Senegal are recorded by the Programme
National de Lutte contre le Paludisme (PNLP, the national
malaria control program in Senegal), and all age-groups
were screened.6 The number of observed malaria cases is
available for various health districts in Senegal for the period
2001–2010. Thesemalaria data are recorded andaveraged from
11 main sites (Dakar, Diourbel, Fatick, Kaolack, Kolda, Louga,
Matam, Saint-Louis, Tambacounda, Thies, and Ziguinchor) for
all health districts and hospitals to derive monthly time series.
The selection of these sentinel sites provides a good represen-
tation of malaria transmission in different climatic zones of
Senegal. These cases are clinically confirmed using rapid di-
agnostic tests,53 as recommended by the WHO.
Climate dataset. Reanalysis climate datasets are used to

drive the LMM. Reanalysis is a systematic approach to pro-
duce data sets for climate monitoring and research. Re-
analyses are created using a fixed data assimilation scheme
and climate model(s), which assimilate all available observa-
tions. This framework provides a dynamically consistent es-
timate of the climate state at each time step. The component
of this framework, which varies, is the source of the raw input
observation data. This is unavoidable because of the ever-
changing earth observational network which includes, but is
not limited to, radiosonde, satellite, buoy, aircraft, and ship
reports. Presently, approximately 7–9 million observations
globally are assimilated at each time step for the production of
reanalysis products. Reanalysis products have proven to be
quite useful when used with appropriate care.
For comparison, four different reanalysis datasets are

used in this study. The Twentieth Century Reanalysis was
used for the period 1910–2009 at 2.5� × 2.5� spatial reso-
lution,54 and the National Center for Environmental Pre-
diction (NCEP) Reanalysis55 was used for the period
1948–2017 at 2.5� × 2.5� spatial resolution. These two

FIGURE 1. Location of the study area: West Africa (4�N–18�N and
20�W–15�E) delineated in red. This figure appears in color at
www.ajtmh.org.
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reanalysis datasets are provided by the National Oceanic
Atmospheric Administration. The European Centre for
Medium-Range Weather Forecasts (ECMWF) Atmospheric
Reanalysis of the Twentieth Century (ERA20C) reanalysis
dataset is available from 1910 to 2010 at 2.5� × 2.5� spatial
resolution,56 and the interim ECMWF Re-Analysis (ERA-
Interim) data, for the period 1979–2017, at 1.5�× 1.5� spatial
resolution.57 These two reanalysis datasets are available
from the ECMWF.
Model validation and scores. For rainfall, July–August–

September (JAS) and, for temperature, September–October–
November (SON) are considered. The annual cycle is estimated
from datasets by taking the average of monthly values for all
years, and the interannual variability is calculated fromdatasets
by taking the annual mean, that is, the average of all months for
a given year. Climatologically, the seasonal cycle is commonly
estimated fromdatasetsby taking the averageof all themonths
during the considered season.We have calculated correlations
between the different simulated malaria incidence indices and
observedmalariacases.After removing the seasonal cyclefirst,
standardized anomaly values were correlated. Standardized

anomalies are defined as the difference between seasonal in-
cidence and the climatological average; this difference is then
divided by the standard deviation of the seasonal incidence. A
standard Pearson’s R test was then used to estimate the sta-
tistical significance of correlations coefficients. All results were
significant at the 99% confidence interval (CI).

RESULTS

Spatial, seasonal, and interannual variability of rainfall
and temperature in West Africa. Figure 2 represents the
average of rainfall during JAS (Figure 2A–D) and temperature
during SON (Figure 2E–H) for the different reanalysis datasets,
respectively (20CR, NCEP, ERA20C, and ERA-Interim). The
wettest area is located over the southern part of West Africa
(Figure 2A–D). Rainfall ranges between 50 mm/month in the
northern part to 400 mm/month in the southern part of West
Africa. Compared with other reanalysis datasets, the rainfall
amount per month is lower for ERA20C (∼50 to 100 mm/
month, except for theGulf of Guinea). This difference in rainfall
amounts (Figure 2) can be attributed to biases in rainfall

FIGURE 2. (A–D) Average July–August–September rainfall and (E and F) September–October–November temperature for the different reanalysis
datasets, respectively (20CR, National Center for Environmental Prediction [NCEP], European Centre for Medium-Range Weather Forecasts
Atmospheric Reanalysis of the Twentieth Century [ERA20C], and interim ECMWF Re-Analysis [ERA-Interim]). This figure appears in color at
www.ajtmh.org.
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products provided by the 20CR, NCEP, ERA20C, and ERA-
Interim reanalysis datasets.
The warmest areas are located over the northern part of

West Africa, bordering the Sahara desert (Figure 2E–H).
Temperatures averaged over West Africa generally show a
bimodal evolution, with peaks in April–May and October.
Seasonality in rainfall and temperature for the different re-

analysis datasets is shown in Figure 3. Figure 3A–D shows the

rainfall season (yaxis),withamaximumduring theboreal summer
(JAS). Regarding the interannual variability (x axis), the signal is
less comparable between reanalysis data and illustrates that
WestAfricaexperiencedseveralerratic rainfall regimesduring the
common period (1979–2009). Significant multi-decadal rainfall
variability is also shown. This finding is coherent with the Atlantic
Multi-decadal Oscillation and changes in vegetation cover over
the Sahel.58,59 Warm temperatures are well represented in all

FIGURE 3. Intra-annual/interannual variability of climate parameters in West Africa. (A–D) Rainfall for the different reanalysis products (20CR,
National Center for Environmental Prediction [NCEP], European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis of the
TwentiethCentury [ERA20C], and interimECMWFRe-Analysis [ERA-Interim]). (E–H) Temperature for the samedatasets. This figure appears in color
at www.ajtmh.org.
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reanalysis products, showing a realistic seasonal cycle (with
warmest temperatures in March–June) and a significant in-
creasing trend during the recent period (Figure 3E–H).
Validation of seasonal and interannual cycles of simu-

lated malaria incidence over Senegal. Annual simulated
malaria incidence (%) andobservedmalaria cases are overlaid
onto the annual cycle of rainfall and temperature for Senegal in
Figure 4. The simulated malaria season in Senegal, in partic-
ular, takes place between September and November, with a
clear peak in October; this is confirmed also by the observed
malaria cases (Figure 4). Malaria transmission takes place
toward the end of the rainy season in Senegal, following heavy
and frequent monsoon rains occurring between July and
October (Figure 4, blue line). Temperature seasonality pre-
sents a bimodal evolution with two peaks, one in May and the
other in October (Figure 4, black line). Figure 5 shows malaria
incidence interannual variability, based on LMM malaria sim-
ulationsdrivenby the 20CR,NCEP, ERA20C, andERA-Interim
reanalysis datasets (Figure 5A and B) and observed malaria
data by the PNLP (Figure 5E). Simulated incidence values are
largest from September to November on average, for all

simulations (Figure 5A–D). This finding is consistent with
seasonality in the observed number of cases (Figure 5E). If we
focus on long-term reanalysis data (20CR and ERA20C), there
is a decrease in simulated malaria incidence during the
drought (1970s–1980s), with respect to the wet period
(1950s–1960s). Some differences can be noticed between the
different reanalysis-driven simulations. Figure 6 represents
the standardized malaria indices over Senegal. The long time
series (20CR and ERA20C) are showing very similar trends. A
tendency toward a decrease in simulated malaria incidence
and observed malaria cases is depicted during the most re-
cent years. A peak in malaria cases is observed in 2010; this
feature is also shown for the simulated indices (NCEP and
ERA-Interim). Low malaria in 2001/2002 might be related to
drier-than-average conditions in Senegal. Large correlation
coefficients are found between simulated malaria incidence
and observed number of malaria cases in Senegal (Table 1).
The best correlation coefficients are obtained with NCEP and
ERA-Interim (r = 0.93 and r = 0.95, respectively). The correla-
tion is slightly lower for ERA20C than for other reanalysis
datasets.

FIGURE 4. Annual cycle of climate input parameters (rainfall in mm, blue line; temperature in �C, black line) based on reanalysis data, simulated
malaria incidence (%, red line), and observed malaria cases in Senegal (gray line) for (A) 20CR, (B) National Center for Environmental Prediction
(NCEP), (C) European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis of the Twentieth Century (ERA20C), (D) interim
ECMWF Re-Analysis (ERA-Interim), and (E) the ensemble mean (ENSMEAN) of all reanalysis data for the common period 2001–2009. This figure
appears in color at www.ajtmh.org.
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Seasonal, interannual, and spatial variability of simulated
malaria incidence in West Africa. The seasonal cycle of sim-
ulated malaria incidence is predominantly unimodal over West
Africa (Figure 7). For the simulatedmalaria incidence, the season
SON is considered. High malaria transmission is simulated in
SON, corresponding to two months after the peak of rains (in
August) and to the second seasonal peak in temperature (Oc-
tober). This finding is consistent across the different reanalysis
products and the ensemblemean over the common period, that
is, 1979–2009 (Figure 7). The spatial distribution of simulated
malaria incidence is shown in Figure 8, for all reanalysis dataset.
Simulated malaria incidence follows a meridional gradient co-
inciding with gradients in temperature and rainfall. The largest
incidence (greater than 60%) is simulated over the southern part
ofWest Africa, whereas incidence in the northern part is very low
(about 0–5%). The annual and interannual variability of simulated
malaria incidence (%) is shown inFigure9. The simulatedmalaria
season usually occurs between September andNovember, with
a clear peak inOctober.Malaria transmission takes place toward
the end of the rainy season in West Africa, following both heavy

and frequent monsoon rains. Transmission generally continues
until the beginning of the dry season during unusual wet years
depending on the duration of the temporary ponds.
With regard to long-term changes, the simulated malaria

incidence (20CR and ERA20C) seems to follow the threemain
rainfall phases in the Sahel: 1) an important signal in malaria
transmission until the late 1960s, 2) a period with a weak
malaria incidence consistent with the 1970s–1980s drought,
and 3) a recovery period with high malaria transmission from
the late 1990s up to today. The simulated decrease in malaria
incidence during the drought is more pronounced for the
NCEP simulations (Figure 9B). The decrease in simulated in-
cidence during the 1970s–1980s drought is consistent with an
observed decrease in vector abundance (in particular,
Anopheles funestus) as reported by field studies.60

DISCUSSION

Climate variability has a significant impact on the agro-
pastoral productivity and natural ecosystems, but it also

FIGURE 5. Intra-annual/interannual variability of malaria incidence (%) in Senegal, for the different reanalysis products. (A) 20CR, (B) National
Center for Environmental Prediction (NCEP), (C) European Centre for Medium-RangeWeather Forecasts Atmospheric Reanalysis of the Twentieth
Century (ERA20C), (D) interimECMWFRe-Analysis (ERA-Interim), and (E) observedmalaria casesover Senegal. Thedifferent datasets are scaled to
the same time period (1910–2017). Missing data appear as white. This figure appears in color at www.ajtmh.org.
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affects the distribution of vector-borne diseases. Long-term
trends in rainfall are related to anthropogenic factors, whereas
decadal variability is associatedwith natural variability climatic
modes such as the Atlantic Multi-decadal Oscillation. In-
terannual variability is related to natural modes of variabil-
ity such as the El Niño Southern Oscillation, Atlantic
Niños, Mediterranean sea surface temperature variability, and
internal climate variability.61–65 Largemalaria incidence canbe
related to suitable local climate and environmental conditions
allowing for the proliferation ofmosquitoes.Malaria outbreaks
are usually caused by 1) the loss of immunity in vulnerable
population after several years without malaria infection and 2)
environmental and/or suitable conditions. As an illustration,
the cessation of malaria control activities during the late
1970s, combined with heavy rainfall related to El Niño
1997–1998, led to a large malaria epidemic in Uganda.41

Warm temperatures over the northern part of West Africa can
also lead to high malaria incidence if particular wet conditions
occur some years.
Our results highlighted a significant relationship among

seasonal malaria and seasonal rainfall and also temperature.
Malaria incidence was shown to be related to seasonal rainfall
with a lagof about 2months; the rainfall seasonpeaked in JAS,
and the peak of the malaria transmission season then oc-
curred in SON. This result was consistent with previous
studies using surveillance malaria data for Senegal.47,48 For
Mali,66 there were similar peaks in malaria cases from

September toNovember and a 3-month lag following the rainy
season peak, which is also noted for Niger.67 Similar studies
were carried out by other authors for Senegal,68–70 but none
used climate parameters and a malaria model to generate
potential malaria parameters in Senegal and extend the study
to the West African domain; neither study used different
available reanalysis datasets to drive a mathematical malaria
model. The seasonal cycle and variability of the input climate
variables present some differences across reanalysis data-
sets, a feature that directly affects the seasonal cycle and
variability of simulated malaria model outputs. The most im-
portant differencewas shown for themagnitude of themalaria
transmission peak. Because LMM is very sensitive to rainfall
input data, these differences in simulated malaria incidence
are likely related to large rainfall changes between the wet
(1950–1969) and the dry period (1970–1990). However, the
different simulations agreed that malaria transmission was
constrained by climate parameters (rainfall and temperature)
approximately following the latitudinal rainfall gradient inWest
Africa. There was a consistent 1- to 2-month lag between the
peak of the rainy season and the simulated peak in malaria
incidence across all reanalysis datasets; this finding was
consistent with observations in Senegal and other West Afri-
can countries. In reality, the observed malaria prevalence rate
was very low in Senegal, which is likely attributable to the
positive effects of malaria control measures such as distri-
bution of ITNs and artemisinin-based combination therapy for

TABLE 1
Correlations coefficients between simulated malaria incidence and observed malaria cases based on the mean seasonal cycle

Driving climate data
Correlation coefficients (r) between simulated incidence

vs. observed number of malaria cases in Senegal

20CR 0.91
National Center for Environmental
Prediction

0.93

European Centre for Medium-Range
Weather Forecasts (ECMWF)
Atmospheric Reanalysis of the
Twentieth Century

0.84

Interim ECMWF Re-Analysis 0.95
Ensemble mean 0.92
All values are significant at the 99% CI.

FIGURE 6. Standardizedmalaria indices (observation vs. simulations) over Senegal, periods are scaled to the same time period (e.g., 1910–2017).
This figure appears in color at www.ajtmh.org.
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treatment. In general, the northern part of Senegal experi-
enced unstable malaria transmission; this is mainly related to
unsuitable climate conditions. The southern part of Senegal
where wetter conditions were located showed higher malaria
prevalence. Significant reductions in malaria transmission
wasachieved over the last 15 years,with elimination occurring
ina small number of countries71; however, increasingdrugand
insecticide resistance threatens these recent gains. Recent
studies analyzed patterns of variation and covariation in re-
sistance to these insecticides, using statistical methods that
handle the sparse spatiotemporal distribution of available
clinical data.72,73 They found a relationship between the dif-
ferent insecticide types that are consistent across large parts
of Africa, allowing the prediction of resistance to be improved
by incorporating observations. These factors related to re-
sistance or intervention measures were not included in the
LMM calibration, but they can somehow explain discrep-
ancies between real malaria cases and simulated malaria in-
cidence by the model.
In this article, we found that high malaria transmission took

place from September to November corresponding to the
second peak of the annual cycle of temperature and two

months after the peak of the heavy rains in August. In addition,
the spatial distribution of malaria was characterized. Ob-
served malaria data and simulated malaria outputs were
consistent and allow the validation of simulations performed
with reanalysis data sets over Senegal. The LMM showed
good agreement with the observed Senegal data. The study
was extended using the products from different reanalyses to
drive the malaria model for West Africa, but validation in other
parts of West Africa is still needed. Longer term changes and
reliability of reanalyses as driving conditions for the malaria
model were investigated.
These findings are useful for achieving the main goal of this

study, which was to validate the LMM over Senegal to extend
the information on malaria parameters to the whole West Af-
rican region and for a longer period. These results can be
useful for stakeholders to develop mitigation and vector
control strategies. Our results highlighted that the southern
part of Senegal was most at risk of malaria epidemics, where
control programefforts have tobeconducted tomake thebest
use of available resources. This study improved our knowl-
edge about climate variability and malaria in Senegal and
encourages validation in other parts of West Africa.

FIGURE 7. Annual cycle of climate input parameters (rainfall in mm and temperature in �C) based on different reanalysis datasets and simulated
malaria incidence (%) inWest Africa for (A) 20CR, (B) National Center for Environmental Prediction (NCEP), (C) European Centre forMedium-Range
Weather Forecasts Atmospheric Reanalysis of the Twentieth Century (ERA20C), (D) interim ECMWF Re-Analysis (ERA-Interim), and (E) the
ensemble mean of all reanalysis data for the common period (1979–2009). This figure appears in color at www.ajtmh.org.
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