165 research outputs found

    Usutu virus in Africa.

    No full text
    Usutu virus (USUV) was discovered in South Africa in 1959. Since then, it has been reported in several African countries including Senegal, Central African Republic, Nigeria, Uganda, Burkina Faso, Cote d'Ivoire, and Morocco. In 2001, USUV has been identified for the first time outside of Africa, namely in Europe, where it caused a significant mortality among blackbirds in Vienna, Austria. In 2009, the first two human cases of USUV infection in Europe have been reported in Italy, causing encephalitis in immunocompromised patients. The host range in Africa includes mainly Culex mosquitoes, birds, and also humans with one benign and one severe case. Given its role as a potential human pathogen and the similar appearance compared with other emerging arboviruses, it is essential to investigate the natural history and ecology of USUV in Africa. In this regard, we review the emergence of USUV in Africa, summarizing data about isolations, host range, and potential vectors, which should help to improve our understanding of the factors underlying the circulation of USUV in Europe and Africa

    Vector competence of Aedes vexans (Meigen), Culex poicilipes (Theobald) and Cx. quinquefasciatus Say from Senegal for West and East African lineages of Rift Valley fever virus

    Get PDF
    Background Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is a mosquito–borne, zoonotic pathogen. In Senegal, RVFV was first isolated in 1974 from Aedes dalzieli (Theobald) and thereafter from Ae. fowleri (de Charmoy), Ae. ochraceus Theobald, Ae. vexans (Meigen), Culex poicilipes (Theobald), Mansonia africana (Theobald) and Ma. uniformis (Theobald). However, the vector competence of these local species has never been demonstrated making hypothetical the transmission cycle proposed for West Africa based on serological data and mosquito isolates. Methods Aedes vexans and Cx. poicilipes, two common mosquito species most frequently associated with RVFV in Senegal, and Cx. quinquefasciatus, the most common domestic species, were assessed after oral feeding with three RVFV strains of the West and East/central African lineages. Fully engorged mosquitoes (420 Ae. vexans, 563 Cx. quinquefasciatus and 380 Cx. poicilipes) were maintained at 27 ± 1 °C and 70–80 % relative humidity. The saliva, legs/wings and bodies were tested individually for the RVFV genome using real-time RT-PCR at 5, 10, 15 and 20 days post exposure (dpe) to estimate the infection, dissemination, and transmission rates. Genotypic characterisation of the 3 strains used were performed to identify factors underlying the different patterns of transmission. Results The infection rates varied between 30.0–85.0 % for Ae. vexans, 3.3–27 % for Cx. quinquefasciatus and 8.3–46.7 % for Cx. poicilipes, and the dissemination rates varied between 10.5–37 % for Ae. vexans, 9.5–28.6 % for Cx. quinquefasciatus and 3.0–40.9 % for Cx. poicilipes. However only the East African lineage was transmitted, with transmission rates varying between 13.3–33.3 % in Ae. vexans, 50 % in Cx. quinquefasciatus and 11.1 % in Cx. poicilipes. Culex mosquitoes were less susceptible to infection than Ae. vexans. Compared to other strains, amino acid variation in the NSs M segment proteins of the East African RVFV lineage human-derived strain SH172805, might explain the differences in transmission potential. Conclusion Our findings revealed that all the species tested were competent for RVFV with a significant more important role of Ae. vexans compared to Culex species and a highest potential of the East African lineage to be transmitted

    Use of Viremia to Evaluate the Baseline Case Fatality Ratio of Ebola Virus Disease and Inform Treatment Studies: A Retrospective Cohort Study.

    Get PDF
    BACKGROUND: The case fatality ratio (CFR) of Ebola virus disease (EVD) can vary over time and space for reasons that are not fully understood. This makes it difficult to define the baseline CFRs needed to evaluate treatments in the absence of randomized controls. Here, we investigate whether viremia in EVD patients may be used to evaluate baseline EVD CFRs. METHODS AND FINDINGS: We analyzed the laboratory and epidemiological records of patients with EVD confirmed by reverse transcription PCR hospitalized in the Conakry area, Guinea, between 1 March 2014 and 28 February 2015. We used viremia and other variables to model the CFR. Data for 699 EVD patients were analyzed. In the week following symptom onset, mean viremia remained stable, and the CFR increased with viremia, V, from 21% (95% CI 16%-27%) for low viremia (V < 104.4 copies/ml) to 53% (95% CI 44%-61%) for intermediate viremia (104.4 ≤ V < 105.2 copies/ml) and 81% (95% CI 75%-87%) for high viremia (V ≥ 105.2 copies/ml). Compared to adults (15-44 y old [y.o.]), the CFR was larger in young children (0-4 y.o.) (odds ratio [OR]: 2.44; 95% CI 1.02-5.86) and older adults (≥ 45 y.o.) (OR: 2.84; 95% CI 1.81-4.46) but lower in children (5-14 y.o.) (OR: 0.46; 95% CI 0.24-0.86). An order of magnitude increase in mean viremia in cases after July 2014 compared to those before coincided with a 14% increase in the CFR. Our findings come from a large hospital-based study in Conakry and may not be generalizable to settings with different case profiles, such as with individuals who never sought care. CONCLUSIONS: Viremia in EVD patients was a strong predictor of death that partly explained variations in CFR in the study population. This study provides baseline CFRs by viremia group, which allow appropriate adjustment when estimating efficacy in treatment studies. In randomized controlled trials, stratifying analysis on viremia groups could reduce sample size requirements by 25%. We hypothesize that monitoring the viremia of hospitalized patients may inform the ability of surveillance systems to detect EVD patients from the different severity strata

    Phylogeography of Rift Valley Fever Virus in Africa Reveals Multiple Introductions in Senegal and Mauritania

    Get PDF
    Rift Valley Fever (RVF) virus (Family Bunyaviridae) is an arthropod-borne RNA virus that infects primarily domestic ruminants and occasionally humans. RVF epizootics are characterized by numerous abortions and mortality among young animals. In humans, the illness is usually characterized by a mild self-limited febrile illness, which could progress to more serious complications. RVF virus is widespread and endemic in many regions of Africa. In Western Africa, several outbreaks have been reported since 1987 when the first major one occurred at the frontier of Senegal and Mauritania. Aiming to evaluate the spreading and molecular epidemiology in these countries, RVFV isolates from 1944 to 2008 obtained from 18 localities in Senegal and Mauritania and 15 other countries were investigated. Our results suggest that a more intense viral activity possibly took place during the last century compared to the recent past and that at least 5 introductions of RVFV took place in Senegal and Mauritania from distant African regions. Moreover, Barkedji in Senegal was possibly a hub associated with the three distinct entries of RVFV in West Africa

    Molecular Diagnostics of Ebola Patient Samples by Institut Pasteur de Dakar Mobile Laboratory in Guinea 2014–2016

    Get PDF
    As part of the laboratory response to the Ebola virus outbreak in Guinea, the Institut Pasteur de Dakar mobile laboratory (IPD-ML) was set up in Donka hospital from 2014 to 2016. EBOV suspected samples collected at Ebola Treatment Centers (ETC) and from community deaths were sent daily to IPD-ML. Analysis was performed using dried oligonucleotide mixes for real-time RT-PCR designed for field diagnostic. From March 2014 to May 2015, a total of 6055 patient samples suspected for EBOV collected from seven regions of Guinea were tested by real-time RT-PCR. These patients’ clinical included serum samples (n = 2537 samples) and swabs (n = 3518 samples) with positivity rates of 36.74 and 6.88% respectively. Females were significantly more affected than males with positivity rates of 22.39 and 17.22% respectively (p-value = 5.721e-7). All age groups were exposed to the virus with significant difference (p-value <= 2.2e-16). The IPD-ML contributed significantly to the surveillance and patient management during the EBOV outbreak in Guinea. Furthermore, dried reagents adapted for field diagnostic of EVD suspect cases could be useful for future outbreak preparedness and response

    Effects of Ebola epidemic on obstetrical emergencies and outcomes in the region of Kindia, Guinea

    Get PDF
    Background: Maternal mortality is still high in Guinea despite a decline from 724 to 550 maternal deaths per 100,000 live births between 2012 and 2018. The proportion of births attended by skilled personnel is estimated at 45%. The objective of this study was to assess the effect of Ebola virus disease (EVD) epidemic on the frequency of absolute maternal indications, as well as the outcomes of these interventions for mother and child in the region of Kindia.Methods: This was a longitudinal study using 20 months of retrospective data collected in the pre-Ebola (March to December 2012 and March to December 2013) and intra-Ebola (March to December 2014 and March to December 2015) periods. The proportions of maternal health indicators in both study periods were compared using a significance level of 0.05.Results: A total of 1747 women were included in this study. The proportion of women who received a major obstetric procedure in Kindia regional hospital was 85% in each pre and post Ebola periods. Ebola, however, contributed to a significant increase in maternal deaths.Conclusions: The Ebola epidemic has contributed to a significant increase in maternal deaths in health facilities. Measures encouraging health workers to manage obstetric emergencies during critical periods would be necessary

    Minimizing disruptions to immunization services in the context of COVID-19 in Senegal: lessons learnt and policy options

    Get PDF
    The COVID-19 pandemic revealed the vulnerability of essential health services globally and caused major disruptions, particularly in immunization services. In 2020, an estimated two thirds of 105 countries reported disruptions to routine facility-based and/or outreach immunization services (WHO, 2020b). Within the same year, an estimated 23 million children missed out on basic childhood vaccinations, accounting for the highest number since 2009 and representing a significant increase from 2019 (UNICEF, 2021; WHO, 2021a). Some settings experienced an upsurge in deadly diseases, such as measles outbreaks observed in Nigeria and Côte d’Ivoire between late 2020 and early 2021 (WHO, 2022a). The indirect effects of the pandemic on routine immunization services will likely lead to increased illness and death for many years, particularly among vulnerable populations such as women and children

    Reemergence of Sylvatic Dengue Virus in Southern Senegal, 2021

    Get PDF
    As part of the syndromic surveillance of fever in Senegal, the virology department at Institut Pasteur de Dakar (IPD) in collaboration with the Epidemiology Unit and the Senegalese Ministry of Health conducted syndromic surveillance of fever in Senegal. Sample are from all suspected arboviral infections patients attending any of the sentinel sites. Collected blood samples were sent on a weekly basis at WHOCC for arboviruses and hemorrhagic fever viruses for screening of seven medically important arboviruses, including dengue virus (DENV). From January to December 2021, 2010 suspected cases were received among them 124 for confirmed to be DENV+ by RT-qPCR attempt of serotyping led to the detection of atypical DENV case from Sare Yoba area (Kolda region) which is unable to be correctly assigned to a serotype by the available tools (TIB Molbiol Modular Dx Dengue typing kit). Performed genome sequencing et phylogenetic analysis leads to the identification of a sylvatic DENV-2 strain closely related to a virus previously detected in Guinee-Bissau in 2009. This finding constitutes proof of the contemporary circulation of DENV-2 strain belonging to the sylvatic cycle in addition to well-known epidemic strains; this adds a piece of complexity to dengue management in Senegal. Alarmingly, it calls for improved genomic surveillance of DENV to know the genetic diversity of circulating strains in order to strengthen future vaccination policies
    • …
    corecore