1,547 research outputs found

    A study of local approximation for polarization potentials

    Full text link
    We discuss the derivation of an equivalent \textit{l}-independent polarization potential for use in the optical Schr\"{o}dinger equation that describes the elastic scattering of heavy ions. Three diffferent methods are used for this purpose. Application of our theory to the low energy scattering of the halo nucleus 11^{11}Li from a 12^{12}C target is made. It is found that the notion of \textit{l}-independent polarization potential has some validity but can not be a good substitute for the \textit{l}-dependent local equivalent Feshbach polarization potential.Comment: 8 pages, 4 figure

    Energy Efficiency Measures for an Electrical Material Industry

    Full text link
    The main goal of the present paper is to present the study of energy efficiency measures for an electrical material industry. The high-energy consumption of this kind of industry lead companies to search for solutions that allow increasing the energy efficiency in their installations and in the processes, promoting the reduction of the energy consumption and costs. In this context, the objectives of this study emerged, which resulted from the main needs identified by the company. Therefore, the work was divided into four parts. The first one, was the study of replacing the existing lighting (mainly mercury vapor lamps by led); another study conducted was the replacement of the electric motors in injection machines by new and more efficient ones; the third one was the installation of a photovoltaic solar system (for self-consumption) and, finally, the project of a new power converter station for the company. The energy efficiency studies carried out are based on: a careful analysis of the data provided by the company; all the measurements done; the consumption profiles that have been drawn; an extensive market research (with the purpose of finding the most efficient solutions for each case); and in already existing and proven calculation methodologies, leading, in this way, to a greater reliability of the obtained results. These studies showed to which extent the implementation of the various measures presented are economically viable, their impact on the reduction of energy consumption and the annual savings achieved.This work was supported by Coimbra Institute of Engineering – Polytechnic Institute of Coimbra and by projects: UID/MULTI/00308/2019 (supported by the Portuguese ‘Fundação para a Ciência e a Tecnologia’: FCT – Foundation for Science and Technology) and by the European Regional Development Fund through the COMPETE 2020 Programme, FCT Portuguese Foundation for Science and Technology within project T4ENERTEC (POCI-01- 0145-FEDER-029820)

    Multi-Channel Inverse Scattering Problem on the Line: Thresholds and Bound States

    Get PDF
    We consider the multi-channel inverse scattering problem in one-dimension in the presence of thresholds and bound states for a potential of finite support. Utilizing the Levin representation, we derive the general Marchenko integral equation for N-coupled channels and show that, unlike to the case of the radial inverse scattering problem, the information on the bound state energies and asymptotic normalization constants can be inferred from the reflection coefficient matrix alone. Thus, given this matrix, the Marchenko inverse scattering procedure can provide us with a unique multi-channel potential. The relationship to supersymmetric partner potentials as well as possible applications are discussed. The integral equation has been implemented numerically and applied to several schematic examples showing the characteristic features of multi-channel systems. A possible application of the formalism to technological problems is briefly discussed.Comment: 19 pages, 5 figure

    A pixel-based complexity model to estimate energy consumption in video decoders

    Get PDF
    The increasing use of HEVC video streams in diverse multimedia applications is driving the need for higher user control and management of energy consumption in battery-powered devices. This paper presents a contribution for the lack of adequate solutions by proposing a pixel-based complexity model that is capable of estimating the energy consumption of an arbitrary software-based HEVC decoder, running on different hardware platforms and devices. In the proposed model, the computational complexity is defined as a linear function of the number of pixels processed by the main decoding functions, using weighting coefficients which represent the average computational effort that each decoding function requires per pixel. The results shows that the cross-correlation of frame-based complexity estimation with energy consumption is greater than 0.86. The energy consumption of video decoding is estimated with the proposed model within an average deviation range of about 6.9%, for different test sequences.info:eu-repo/semantics/publishedVersio

    Experimental and Computational Study of Flame Inhibition Mechanisms of Halogenated Compounds in C1-C3 Alkanes Flames

    Get PDF
    After the restriction of different halogenated fire suppressants by the Montreal Protocol, there is an urgent need to identify environmentally friendlier alternatives. In particular, several efforts have been conducted to find substitutes of Halon 1301 (CF_(3)Br) which was considered the best in its class, not only because of its superior extinguishing performance, but also due to its relatively low toxicity. Different options have been proposed over the last decade. However, no single compound has been found to meet all of the exigent criteria. Further progress in this research requires fundamental combustion knowledge that can help us understand the unique performance of Halon 1301, to prevent this search from becoming a tedious trial-and-error process. To this end, the present work aids in the search of fire suppressants alternatives by improving the flame inhibition mechanism understanding, starting with CF_(3)Br, which serves as a benchmark for new fire suppressants. Then, a case study of two of the most currently used fire suppressants, C_(2)HF_(5) (HFC-125) and C_(2)HF_(7) (HFC-227), is presented and compared with CF_(3)Br performance. For these analyses, a systematic analytical methodology was used to examine the effect of fire suppressants on ignition and laminar flame propagation of C_(1)-C_(3) alkanes premixed mixtures, as good representatives of flammable gas fires (Class B fires). This methodology integrates model formulations and experimental designs in order to examine both chemical kinetics and thermal effects on fire suppressants at different stoichiometric conditions. Modeling predictions were based on a detailed chemical kinetics mechanism which was assembled from a new, well-studied H_(2), C_(0)–C_(5) hydrocarbon mechanism from NUI Galway and recent CF_(3)Br and HFC fire suppressant chemistry from NIST. Experimental study involved the use of a shock tube (for ignition analysis) and a freely expanding flame speed bomb (for laminar flame speed analysis). Most of the experimental data provided in this work are the first measurements of their kind for the compounds and mixtures explored in this thesis. These measurements are extremely valuable since they can be used as a metric for model validation which represents one of the objectives of this work. Current analyses indicate that the combustion properties of halogenated compounds cannot be generalized and depends on different factors. On one hand, the presented results showed that all the tested fire suppressants can decrease the laminar flame speed of the examined C_(1)-C_(3)alkanes premixed flames; however, in some cases they can act as ignition promoters. In order to understand these behaviors, sensitivity analyses were conducted showing that halogenated species, resulting from the fire suppressants decomposition, can participate in both promoting and inhibiting reactions that compete to give a net effect. Identification of the key reaction responsible for such effects was conducted. Then, improvements on the fire suppressant chemistry can be done by modifying the corresponding Arrhenius parameters of such important reactions. This work not only provides fundamental knowledge of halogenated flame inhibition mechanisms, but also serves as the basis for more accurate chemical kinetics mechanisms that can be used for better predictions over a wide range of conditions

    Description of a domain by a squeezed state in a scalar field theory

    Full text link
    The author attempted to describe a domain by using a squeezed state in quantum field theory. An extended squeeze operator was used to construct the state. In a scalar field theory, the author described a domain that the distributions of the condensate and of the fluctuation are Gaussian. The momentum distribution, chaoticity and correlation length were calculated. It was found that the typical value of the momentum is about the inverse of the domain size, and that the chaoticity reflects the ratio of the size of the squeeze region to that of the coherent region. The results indicate that the quantum state of a domain is surmised by these quantities under the assumption that the distributions are Gaussian. As an example, this method was applied to a pion field, and the momentum distribution and the chaoticity were shown.Comment: 10 pages, 5 figures, a typographical error in the reference is correcte

    Raising awareness of the accessibility challenges in mathematics MOOCs

    Get PDF
    MOOCs provide learning environments that make it easier for learners to study from anywhere, at their own pace and with open access to content. This has revolutionised the field of eLearning, but accessibility continues to be a problem, even more so if we include the complexity of the STEM disciplines which have their own specific characteristics. This work presents an analysis of the accessibility of several MOOC platforms which provide courses in mathematics. We attempt to visualise the main web accessibility problems and challenges that disabled learners could face in taking these types of courses, both in general and specifically in the context of the subject of mathematics

    Quantum description for a chiral condensate disoriented in a certain direction in isospace

    Get PDF
    We derive a quantum state of the disoriented chiral condensate dynamically, considering small quantum fluctuations around a classical chiral condensate disoriented in a certain direction n \vec n in isospace. The obtained nonisosinglet quantum state has the characteristic features; (i) it has the form of the squeezed state, (ii) the state contains not only the component of pion quanta in the direction n \vec n but also the component in the perpendicular direction to n \vec n and (iii) the low momentum pions in the state violate the isospin symmetry. With the quantum state, we calculate the probability of the neutral fraction depending on the time and the pion's momentum, and find that the probability has an unfamiliar form. For the low momentum pions, the parametric resonance mechanism works with the result that the probability of the neutral fraction becomes the well known form approximately and that the charge fluctuation is small.Comment: 19 page
    corecore