
A Pixel-based Complexity Model to Estimate
Energy Consumption in Video Decoders
Victor H. Costa, Pedro A. Assuncao

Instituto de Telecomunicacoes
Politecnico de Leiria

Morro do Lena - Alto Vieiro, Leiria, Portugal
Email: 2151151@my.ipleiria.pt, amado@co.it.pt

Paulo J. Cordeiro
Esc. Superior Tecnologia e Gestao

Politecnico de Leiria
Morro do Lena - Alto Vieiro, Leiria, Portugal

Email: paulo.cordeiro@ipleiria.pt

Abstract—The increasing use of HEVC video streams in
diverse multimedia applications is driving the need for higher
user control and management of energy consumption in battery-
powered devices. This paper presents a contribution for the
lack of adequate solutions by proposing a pixel-based complexity
model that is capable of estimating the energy consumption of
an arbitrary software-based HEVC decoder, running on different
hardware platforms and devices. In the proposed model, the
computational complexity is defined as a linear function of the
number of pixels processed by the main decoding functions, using
weighting coefficients which represent the average computational
effort that each decoding function requires per pixel. The results
shows that the cross-correlation of frame-based complexity esti-
mation with energy consumption is greater than 0.86. The energy
consumption of video decoding is estimated with the proposed
model within an average deviation range of about 6.9%, for
different test sequences.

I. INTRODUCTION

THe complexity of High Efficiency Video Encoding
(HEVC) has been thoroughly investigated in recent years

in order to devise fast methods capable of reducing the
computational time required by encoders, while not com-
promising the compression efficiency [1] [2] [3]. Given the
computational complexity of HEVC standard encoders and the
ever increasing use of multimedia applications and services
over mobile networks, reducing the coding complexity has
been particularly relevant for resource-constrained devices
and to also increase the battery-life of portable equipment.
However, despite the fact that HEVC encoders are much
more computationally demanding than decoders, the most used
operation in mobile devices is decoding, integrated in different
types of video players. Therefore, in the vast majority of user
devices, the amount of energy consumed for video decoding
is in general much higher than for video encoding. This trend
is expected to increase in the near future, as the mobile video
traffic share foreseen for 2021 is about 78% [4].

In the past, the problem of HEVC decoding complexity has
been addressed by several researchers for different purposes.
For instance, the performance of H.264/AVC decoding was
investigated in [5] to identify the main bottlenecks and to
improve decoder architectures. Closer to the scope of this
paper, a power consumption model for H.264/AVC video

c©2018 IEEE

decoders with hardware accelerator, was presented in [6].
The authors show that a small number of parameters can
be used to estimate the power consumption of hardware
accelerators with a maximum prediction error of 10%. In
[7], the authors analyse the HEVC decoder complexity to
devise a tile partitioning method capable of achieving load
balancing in multicore platforms with speedup gains and
energy savings. A linear relation between processing time and
energy consumption was found in [8], bringing relevant insight
for developing software-based decoders. Based on the high
correlation between processing times and energy consumption,
the energy savings between different implementations can be
directly estimated from speedup gains in processing time.
More recently the same authors extended their previous work
and developed a feature-based model, using multiple bit stream
parameters (20) and including the impact of memory access in
energy consumption models [9]. An interesting finding is that
decoding time based models yields slightly better estimation
accuracy than parametric ones (6% in comparison to 8%)
while in the case of hardware based decoders the maximum
estimation error is about 20%.

In this paper, a pixel-based complexity model is devised to
estimate the amount of energy required for HEVC software-
based decoding of video streams. The underlying principle
of the proposed model is based upon the principle that each
decoded pixel contributes to the computational complexity
with an amount that depends on the cumulative processing
time of the various decoding functions used to compute its
value. The spatial and temporal resolutions of the decoded
video are implicitly embedded in the model. The proposed
method can be used to estimate the amount of energy (e.g.
given as a percentage of the battery capacity) required by
a software-based decoder using just few frames (e.g. 10) to
compute the model parameters.

II. DECODER COMPLEXITY ANALYSIS AND MODELLING

In the case of HEVC encoding tools, the computational
complexity has been evaluated in the recent past. For instance,
in [1] it was observed that among those that consume more
computational power one can distinguish between the All-intra
(AI) and Random Access (RA) encoding configurations. In
the former, the most computationally intensive functions are

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IC-online

https://core.ac.uk/display/159813744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the transform and quantisation, intra prediction and entropy
coding, while in the latter, Motion Estimation (ME) requires
the most significant portion of encoding computational power
for SAD calculations and fractional pixel search refinement.

However in the case of video decoding, such complex-
ity measures are not useful because many of the encoding
functions are not required at the decoding side. For instance,
the rate-distortion optimisation (RDO) process include many
encoding functions in several optimisation loops, which sig-
nificantly contribute for the encoding complexity, but not for
decoding. For these reasons the computational complexity
of encoding functions cannot be straightforwardly translated
to the decoding side. In [10], the decoding computational
complexity in the AI configuration was found to be dominated
by the inverse transform and deblocking filters while Motion
Compensation and filters are the most complex functions in
the RA configuration. Based on these results, the functions that
most contribute for decoding complexity were defined as Inter
(includes Motion Compensation), Intra, Inverse Transform,
Deblocking Filter and SAO filter.

A. Pixel-based decoding complexity model

Based on the evidence found in previous works cited above,
a linear complexity model for video decoding is proposed.
The following decoding functions are defined as those which
mostly contribute for the computational complexity of HEVC
video decoders: Motion Compensation (Inter), Intra Prediction
(Intra), Inverse Transform & Quantization (IT), Deblocking
filter (Deblock), Sample Adaptive Offset filter (SAO).

In the proposed model, the computational complexity is
defined as a weighted sum of the number of pixels processed
by each decoding function defined above. The weighting fac-
tors are defined by the computational complexity per pixel of
each decoding function. Then, for each CU, the corresponding
complexity is given by the following expression:

CCUi =
∑
m∈M

k(m).Pi(m) (1)

with
M = {Inter, Intra, IT,Deblock, SAO} (2)

Pi(m) is the number of pixels in CUi that are processed by
function m and k(m) is the corresponding complexity per
pixel, as described above. Then the decoding complexity of a
whole frame (Cf ) is obtained by summing the complexities
of all CUs, i.e.,

Cf =

NCU∑
i=1

CCUi
(3)

The weighting coefficients k(m) are model parameters,
which depend on the decoder implementation. They can be
determined online after decoding few frames of a video stream,
counting the number of pixels processed by each function
defined in M and measuring the computational complexity
(i.e., processing timed) that is required for decoding a time-
limited window of w consecutive frames. The ratio between

the processing time and the number of pixels gives the average
computational complexity per processed pixel for a given
decoding function m ∈M , i.e.,

k(m) =
Tw(m)

Pw(m)
, m ∈M (4)

Note that the parameters k(m) are computed for differ-
ent decoder implementations and hardware platforms, which
means that the decoding complexity estimated by this model
is implicitly adapted to different devices. This is an advantage
of this model, which enables its implicit adaptation to different
hardware platforms and/or software implementations.

B. Model parameters

To evaluate the accuracy of the complexity estimation
model, its output was compared with the processing time of
each decoding function measured by a code profiler, such
as the Intel Vtune Amplifier XE. An experimental setup,
comprising the reference decoder HM, running on Intel i7-
2400 2.4GHz CPU with 24 GByte memory with Microsoft
Windows, was implemented to obtain the computational com-
plexity of decoding functions, measured as the accumulated
processing time required by each method. All tests were
conducted following common HEVC test conditions and soft-
ware reference configurations defined by [1]. The tests were
performed for All Intra, Random Access and Low Delay.
Only the processing time of decoding functions was measured,
thus excluding the I/O functions from the measurements in
the profiler. Test sequences with two resolutions were used:
HD (1920X1080 or 1080p), which is representative for most
devices today, including mobile (e.g. smartphones and tablets)
and 4K/UHD (3840X2160 or 2160p), which is representative
for the next generation of high quality video. For 1080p, the
five class B sequences from the JCT-VC test set have been
used at 24, 50 and 60 frames per second (fps).

The model parameters k(m) were first computed for sev-
eral sequences. Since the results obtained from the various
sequences exhibit a similar behaviour, only those regarding
sequence Kimono are shown in this subsection. Table I shows
the intermediate results that lead to the values of k(m).
The first column identifies the main decoding functions of
HEVC decoder. Column #Pels represents the number of pixels
processed by the functions from each decoding function.
Note that, in this counting the same pixel can go through
different functions, thus the #Pels in different functions may
include counting the same pixel. The third column shows the
computational time spent on each function. The fourth and last
columns show the pixel-based complexity for each decoding
function as given by equation 4. The last column k(m) shows
the normalized pixel-based complexity, using the case of Intra
Prediction as the reference.

Using the model parameters obtained from each sequence,
the generic values of k(m) that are valid for the decoder
implementation used in this work are shown in Table II. These
were computed as the average k(m) for all sequences and
quantisation parameters.



Dec. Mod #Pels P.Time(s) Time/Pel
(s)

k(m)

Inter 458551808 11.37 2.48E−08 k(Ir)=1.45
Intra 39112192 0.67 1.71E−08 k(Ia)=1.00
Transform 120137328 1.12 9.28E−09 k(IT )=0.54
Deblock 75534608 3.12 4,13E−08 k(dblk)=2.42
SAO 67434068 0.89 1,32E−08 k(SAO)=0.77

TABLE I
MODEL PARAMETERS FOR KIMONO 1920X1080 24 QP27, RA.

Inter Intra Transform Dblk SAO
k(Ir) k(Ia) k(Tr) k(dblk) k(SAO)
0.81 1 0.47 1.79 0.36

TABLE II
AVERAGE k(m) VALUE FOR DECODING FUNCTIONS

C. Complexity estimation vs processing time

Figure 1 presents the decoder’s complexity per decoding
function for sequence Kimono, measured by the code pro-
filer as processing time (left) and estimated by the proposed
model (right) while running the decoder. Besides the decoding
functions included in set M , the pie-chart on the left also
shows the processing time measured in entropy decoding
and other functions (e.g., file I/O, etc). In the case of the
complexity estimation given by the proposed model (i.e.,
pie chart on the right), entropy decoding is diluted in the
main five functions. These graphs show that the relative
decoding complexity burden estimated by the proposed model
follows a distribution that is similar to the processing time
measured by the code profiler. The main differences observed
in corresponding functions of Figure 1 are due to the implicit
inclusion of entropy decoding (19% of processing time) in
the complexity estimation by the proposed model (i.e., pie
chart on the right). For instance, this can be observed in
the relative decoding complexity of the pixels accounted for
the Transform and Motion Compensation functions, which is
significantly higher than the corresponding processing time. In
the case of the Transform this is justified by the complexity
of entropy decoding functions being added to that of inverse
quantisation and inverse transform, whereas for processing
time, this is separately measured, i.e., not added to inverse
quantisation and inverse transform. In the case of the Motion
Compensation, the complexity of entropy decoding functions
is added to complexity of CUs without coded coefficients
(e.g. skip), whose pixels are not considered in the Transform
function.

III. ESTIMATION OF ENERGY CONSUMPTION

The accuracy of the decoder complexity model presented in
the previous section was evaluated for estimation of the energy
consumption in video decoding. For this purpose, a lightweight
performance tool suite, known as likwid-perfctr from LIKWID
TOOLS was used to measure the decoding energy consump-
tion [11],[12]. Using likwid-perfctrs marker API it is possible
to measure the energy consumption of selected functions of an
application by turning on/off hardware performance counters,
which allows to obtain the CPU energy consumption per

Fig. 1. Relative decoder complexity (Kimono, QP = 27, RA)

frame. Even though these tests were performed with minimal
interference of other running processes, to minimize the impact
of kernel processes on the intended measurements, the results
were obtained running the same test several times (e.g., 6-8)
and then normalising the average results. Also to get more
accurate measurements, these started at each frame’s first call
of the decode method (class TDecTop) and finished after the
execution of loop filters, when frames are fully reconstructed.

The normalised decoding complexity per frame, computed
by the proposed model, was compared with the normalised
energy consumption for each frame, measured by the likwid-
perfctr tool. Figure 2 and Figure 3 show these results for
sequences Ready Steady Go with QP=22 and Bosphorus
with QP=37. These Figures clearly show that there is a high
correlation between the computational complexity estimated
by the proposed model and the energy consumption per frame.
For other sequences and QPs, the profile behaviour is the same.

Fig. 2. Decoding complexity vs Energy consumption (ReadySteadyGo, QP22,
RA)

To further evaluate the degree of similarity between the
decoding complexity and energy consumption the Pearson
Correlation Coefficient (PCC) was computed for 3 sequences,
as shown in Table III. These results show that the pro-
posed pixel-based decoding complexity model is capable of
producing a complexity measure highly correlated with the
energy consumption, which allows to estimate the amount



Fig. 3. Decoding complexity vs Energy consumption (Bosphorus, QP37, RA)

of energy necessary to decode time-limited video sequence
and present such information to mobile users as percentage of
the battery life. The next subsection describes the details of
such application of the proposed model and presents accuracy
results.

QP22 QP27 QP32 QP37
Beauty 0.910 0.895 0.986 0.932
Bosphorus 0.984 0.971 0.914 0.857
ReadySteadyGo 0.951 0.960 0.959 0.938

TABLE III
PCC BETWEEN DECODING COMPLEXITY AND ENERGY CONSUMPTION PER

FRAME

The mean squared error (MSE) between both normalised
curves is shown in Table IV, where it can be seen that
these two measures are quite similar. Since the decoding
computational complexity and the energy consumed per frame
are obtained through independent methods, the results shown
in Table III and Table IV clearly demonstrate that the proposed
model is quite accurate in estimating the energy consumption
of video decoders. Note that the model parameters k(m) are
computed based on the processing time of each device and
decoder implementation, thus the model is implicitly adapted
to different decoders.

QP22 QP27 QP32 QP37
Beauty 0.061 0.057 0.030 0.040
Bosphorus 0.010 0.006 0.008 0.007
ReadySteadyGo 0.008 0.009 0.005 0.003

TABLE IV
MSE BETWEEN DECODING COMPLEXITY AND ENERGY CONSUMPTION

PER FRAME

A. Application in practical video decoders

A practical application of the proposed model is to estimate
the percentage of battery-life that is required to decode a video
stream, as described next. For this purpose, a compressed
stream capable of enabling energy consumption estimation
by different decoders should be generated. This is done by
associating the normalised decoding computational complexity

per frame, as computed by the proposed model, to compressed
streams. Such new functionality can be implemented as side
information that can be either fetched from a video server as a
user option or sent along with the video stream as supplemen-
tal enhancement information (SEI). Then, after decoding an
initial short time video segment (e.g. one GOP), during which
the decoder measures the actual energy consumed to decode
such frames, the total amount of energy required to decode
the entire video stream can be computed from the quasi-
constant relationship between the complexity and consumed
energy per frame, i.e., Cf/Ef ≈ Const. It was found that
the Relative Standard Deviation (RSD) of such ratio is 3,7%,
which indicates low dispersion of values around the mean.

Given the first few frames, such constant can be computed
by using the corresponding decoding complexity and con-
sumed energy. Then the remaining energy can be computed
by simply using the normalised complexity associated to the
whole stream and the constant ratio between complexity and
consumed energy per frame. Note that such constant can be
different for different sequences and QPs.

Table V shows a comparison between the energy per frame
estimated by using the constant complexity-energy ratio and
the actual energy measured by the likwid-perfctr tool. The
complexity-energy ratio was computed after decoding and
measuring the energy consumption of the first 10 frames of
each sequence. Then the constant ratio is used for estimation
of the energy / frame for all frames ahead in the sequence (i.e.,
590). The comparison with the actual energy per frame shows
that the estimation error ∆E lies in the range 1.5% - 14.8%
for different sequences. The greater deviation happens for
sequence ReadySteadyGo, which has the most active content
in both the spatial and temporal dimensions. This suggests
that either the constant complexity-energy ratio should be
frequently updated while decoding the video stream to allow
better estimation of dynamic scenes ahead or more frames
should be initially used to measure the decoding and to
calculate its value. By converting the energy estimation into a
percentage of the battery capacity and admitting a maximum
estimation error of about 15% (average ∆E = 6.9%), the pro-
posed method can be integrated in a battery-life management
tool for user control.

Energy/frame (est.) Energy/frame (real) ∆E (%) avg(∆E)
Beauty 5.5
QP 27 8.96 8.36 7.2
QP 32 6.21 6.30 1.5
QP 37 6.00 5.56 7.9
Bosphorus 2.8
QP 27 7.41 7.12 4.1
QP 32 6.55 6.38 2.7
QP 37 3.17 5.94 1.5
ReadySteadyGo 12.5
QP 27 11.03 9.61 14.8
QP 32 9.00 7.85 14.6
QP 37 6.91 6.39 8.2

Global Average 6.9%
TABLE V

PREDICTED VS MEASURED ENERGY/FRAME USING ONLY THE FIRST 10
FRAMES FOR PARAMETER ESTIMATION (GLOBAL AVERAGE ∆E = 6.9%)



IV. CONCLUSION

This paper described a pixel-based complexity model for
HEVC decoders that is highly correlated with the energy
consumption. Such model is defined as a weighted sum of the
number of pixels that are processed through each decoding
function, which allows to account for the different decoding
complexities required by each coding unit. The usefulness of
the high correlation between complexity and energy consump-
tion is shown to allow the application of the proposed model
in helping mobile users to manage the battery-life of their
devices, by providing estimations of the energy required to
decode a video sequence prior its fully decoding.

REFERENCES

[1] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “Hevc complexity and
implementation analysis,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 22, no. 12, pp. 1685–1696, Dec 2012.

[2] G. Correa, P. Assuncao, L. Agostini, and L. A. da Silva Cruz, “Com-
plexity control of high efficiency video encoders for power-constrained
devices,” IEEE Transactions on Consumer Electronics, vol. 57, no. 4,
pp. 1866–1874, November 2011.

[3] G. Correa, P. A. Assuncao, L. V. Agostini, and L. A. da Silva Cruz,
“Pareto-based method for high efficiency video coding with limited
encoding time,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 26, no. 9, pp. 1734–1745, Sept 2016.

[4] Cisco, “Global mobile data traffic forecast update 20162021,” White
paper, Tech. Rep., March 2017.

[5] M. Alvarez, E. Salami, A. Ramirez, and M. Valero, “A performance char-
acterization of high definition digital video decoding using h.264/avc,”
in IEEE International. 2005 Proceedings of the IEEE Workload Char-
acterization Symposium, 2005., Oct 2005, pp. 24–33.

[6] X. Li, Z. Ma, and F. C. A. Fernandes, “Modeling power consumption
for video decoding on mobile platform and its application to power-
rate constrained streaming,” in 2012 Visual Communications and Image
Processing, Nov 2012, pp. 1–6.

[7] H. Baik and H. Song, “A complexity-based adaptive tile partitioning
algorithm for hevc decoder parallelization,” in 2015 IEEE International
Conference on Image Processing (ICIP), Sept 2015, pp. 4298–4302.

[8] C. Herglotz, E. Walencik, and A. Kaup, “Estimating the hevc decoding
energy using the decoder processing time,” in 2015 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2015, pp. 513–516.

[9] C. Herglotz, D. Springer, M. Reichenbach, A. Kaup, and B. Stabernack,
“Modeling the energy consumption of the hevc decoding process,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. PP,
no. 99, pp. 1–1, 2016.

[10] M. Wien, M. Budagavi, K. U. K. Mishra, and X. Xiu, “JCT-VC AHG
report: Single-loop scalability (AHG16),” 2013.

[11] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
2010 39th International Conference on Parallel Processing Workshops,
Sept 2010, pp. 207–216.

[12] T. Rehl, J. Treibig, G. Hager, and G. Wellein, “Overhead analysis
of performance counter measurements,” in 2014 43rd International
Conference on Parallel Processing Workshops, Sept 2014, pp. 176–185.


