7 research outputs found

    Multi-scale graph-based grading for Alzheimer's disease prediction

    Full text link
    [EN] The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer¿s disease (AD) is clinically relevant, and may above all have a significant impact on accelerating the development of new treatments. In this paper, we present a new MRI-based biomarker that enables us to accurately predict conversion of MCI subjects to AD. In order to better capture the AD signature, we introduce two main contributions. First, we present a new graph-based grading framework to combine inter-subject similarity features and intra-subject variability features. This framework involves patch-based grading of anatomical structures and graph-based modeling of structure alteration relationships. Second, we propose an innovative multiscale brain analysis to capture alterations caused by AD at different anatomical levels. Based on a cascade of classifiers, this multiscale approach enables the analysis of alterations of whole brain structures and hippocampus subfields at the same time. During our experiments using the ADNI-1 dataset, the proposed multiscale graph-based grading method obtained an area under the curve (AUC) of 81% to predict conversion of MCI subjects to AD within three years. Moreover, when combined with cognitive scores, the proposed method obtained 85% of AUC. These results are competitive in comparison to state-of-the-art methods evaluated on the same dataset.This work benefited from the support of the project DeepvolBrain of the French National Research Agency (ANR-18-CE450013). This study was achieved within the context of the Laboratory of Excellence TRAIL ANR-10-LABX-57 for the BigDataBrain project. Moreover, we thank the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02, HL-MRI Project), Cluster of excellence CPU and the CNRS. Finally, this work was also supported by the NIH grants R01-NS094456 and U01-NS106845. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01-AG024904) and by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's Biogen; Bristol-Myes Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffman-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Pharmaceutical Research & Development LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org).The grantee organization is the Northern California Institute of Research and Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.Hett, K.; Ta, V.; Oguz, I.; Manjón Herrera, JV.; Coupé, P.; Alzheimers Disease Neuroimaging Initiative (2021). Multi-scale graph-based grading for Alzheimer's disease prediction. Medical Image Analysis. 67:1-13. https://doi.org/10.1016/j.media.2020.1018501136

    Segmentation of anatomical structures in brain MR images using atlases in FSL - a quantitative approach

    Get PDF
    Segmentation of brain structures from MR images is crucial in understanding the disease progress, diagnosis, and treatment monitoring. Atlases, showing the ex- pected locations of the structures, are commonly used to start and guide the segmentation process. In many cases, the quality of the atlas may have a significant effect in the final result. In the literature, commonly used atlases may be obtained from one subject’s data, only from the healthy, or depict only certain structures that limit their accuracy. Anatomical variations, pathologies, imaging artifacts all could aggravate the problems related to application of atlases. In this paper, we propose to use multiple atlases that are sufficiently different from each other as much as possible to handle such problems. To this effect, we have built a library of atlases and computed their similarity values to each other. Our study showed that the existing atlases have varying levels of similarity for different structures

    Plasma based markers of [11C] PiB-PET brain amyloid burden.

    Get PDF
    PublishedJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov'tChanges in brain amyloid burden have been shown to relate to Alzheimer's disease pathology, and are believed to precede the development of cognitive decline. There is thus a need for inexpensive and non-invasive screening methods that are able to accurately estimate brain amyloid burden as a marker of Alzheimer's disease. One potential method would involve using demographic information and measurements on plasma samples to establish biomarkers of brain amyloid burden; in this study data from the Alzheimer's Disease Neuroimaging Initiative was used to explore this possibility. Sixteen of the analytes on the Rules Based Medicine Human Discovery Multi-Analyte Profile 1.0 panel were found to associate with [(11)C]-PiB PET measurements. Some of these markers of brain amyloid burden were also found to associate with other AD related phenotypes. Thirteen of these markers of brain amyloid burden--c-peptide, fibrinogen, alpha-1-antitrypsin, pancreatic polypeptide, complement C3, vitronectin, cortisol, AXL receptor kinase, interleukin-3, interleukin-13, matrix metalloproteinase-9 total, apolipoprotein E and immunoglobulin E--were used along with co-variates in multiple linear regression, and were shown by cross-validation to explain >30% of the variance of brain amyloid burden. When a threshold was used to classify subjects as PiB positive, the regression model was found to predict actual PiB positive individuals with a sensitivity of 0.918 and a specificity of 0.545. The number of APOE [Symbol: see text] 4 alleles and plasma apolipoprotein E level were found to contribute most to this model, and the relationship between these variables and brain amyloid burden was explored.Alzheimer's Disease Neuroimaging Initiative (ADNI)Canadian Institutes of Health ResearchFoundation for the National Institutes of HealthNational Institutes of HealthInnoMed, European Union of the Sixth Framework programNational Institutes for Health Research Biomedical Research Centre for Mental Health at the South London and Maudsley National Health Service Foundation TrustInstitute of Psychiatry, King's College Londo

    Toward a unified analysis of cerebellum maturation and aging across the entire lifespan: A MRI analysis

    Full text link
    [EN] Previous literature about the structural characterization of the human cerebellum is related to the context of a specific pathology or focused in a restricted age range. In fact, studies about the cerebellum maturation across the lifespan are scarce and most of them considered the cerebellum as a whole without investigating each lobule. This lack of study can be explained by the lack of both accurate segmentation methods and data availability. Fortunately, during the last years, several cerebellum segmenta- tion methods have been developed and many databases comprising subjects of dif- ferent ages have been made publically available. This fact opens an opportunity window to obtain a more extensive analysis of the cerebellum maturation and aging. In this study, we have used a recent state-of-the-art cerebellum segmentation method called CERES and a large data set (N = 2,831 images) from healthy controls covering the entire lifespan to provide a model for 12 cerebellum structures (i.e., lob- ules I-II, III, IV, VI, Crus I, Crus II, VIIB, VIIIA, VIIIB, IX, and X). We found that lobules have generally an evolution that follows a trajectory composed by a fast growth and a slow degeneration having sometimes a plateau for absolute volumes, and a decreasing tendency (faster in early ages) for normalized volumes. Special consider- ation is dedicated to Crus II, where slow degeneration appears to stabilize in elder ages for absolute volumes, and to lobule X, which does not present any fast growth during childhood in absolute volumes and shows a slow growth for normalized volumes.Stavros Niarchos Foundation; University of California, Los Angeles; University of California, San Diego; Northern California Institute for Research and Education; Foundation for the National Institutes of Health; U.S. Food and Drug Administration; Alzheimer's Drug Discovery Foundation; Alzheimer's Association; F. Hoffmann-La Roche; Novartis; Johnson & Johnson; GE Healthcare; Elan; Bristol-Myers Squibb; Bayer Schering; National Institute of Biomedical Imaging and Bioengineering; National Institute on Aging; Alzheimer's Disease Neuroimaging Initiative; National Institutes of Health; Cincinnati Children's Hospital Medical Center; French National Research Agency, Grant/Award Number: CE45-0013Romero, JE.; Coupé, P.; Lanuza, E.; Catheline, G.; Manjón Herrera, JV.; Alzheimers Disease Neuroimaging Initiative (2021). Toward a unified analysis of cerebellum maturation and aging across the entire lifespan: A MRI analysis. Human Brain Mapping. 42(5):1287-1303. https://doi.org/10.1002/hbm.25293S1287130342

    Identification of conversion from mild cognitive impairment to Alzheimer's Disease using multivariate predictors

    No full text
    Prediction of conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD) is of major interest in AD research. A large number of potential predictors have been proposed, with most investigations tending to examine one or a set of related predictors. In this study, we simultaneously examined multiple features from different modalities of data, including structural magnetic resonance imaging (MRI) morphometry, cerebrospinal fluid (CSF) biomarkers and neuropsychological and functional measures (NMs), to explore an optimal set of predictors of conversion from MCI to AD in an Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. After FreeSurfer-derived MRI feature extraction, CSF and NM feature collection, feature selection was employed to choose optimal subsets of features from each modality. Support vector machine (SVM) classifiers were then trained on normal control (NC) and AD participants. Testing was conducted on MCIc (MCI individuals who have converted to AD within 24 months) and MCInc (MCI individuals who have not converted to AD within 24 months) groups. Classification results demonstrated that NMs outperformed CSF and MRI features. The combination of selected NM, MRI and CSF features attained an accuracy of 67.13%, a sensitivity of 96.43%, a specificity of 48.28%, and an AUC (area under curve) of 0.796. Analysis of the predictive values of MCIc who converted at different follow-up evaluations showed that the predictive values were significantly different between individuals who converted within 12 months and after 12 months. This study establishes meaningful multivariate predictors composed of selected NM, MRI and CSF measures which may be useful and practical for clinical diagnosis

    Plasma based markers of [11C] PiB-PET brain amyloid burden

    Get PDF
    Changes in brain amyloid burden have been shown to relate to Alzheimer's disease pathology, and are believed to precede the development of cognitive decline. There is thus a need for inexpensive and non-invasive screening methods that are able to accurately estimate brain amyloid burden as a marker of Alzheimer's disease. One potential method would involve using demographic information and measurements on plasma samples to establish biomarkers of brain amyloid burden; in this study data from the Alzheimer's Disease Neuroimaging Initiative was used to explore this possibility. Sixteen of the analytes on the Rules Based Medicine Human Discovery Multi-Analyte Profile 1.0 panel were found to associate with [(11)C]-PiB PET measurements. Some of these markers of brain amyloid burden were also found to associate with other AD related phenotypes. Thirteen of these markers of brain amyloid burden--c-peptide, fibrinogen, alpha-1-antitrypsin, pancreatic polypeptide, complement C3, vitronectin, cortisol, AXL receptor kinase, interleukin-3, interleukin-13, matrix metalloproteinase-9 total, apolipoprotein E and immunoglobulin E--were used along with co-variates in multiple linear regression, and were shown by cross-validation to explain >30% of the variance of brain amyloid burden. When a threshold was used to classify subjects as PiB positive, the regression model was found to predict actual PiB positive individuals with a sensitivity of 0.918 and a specificity of 0.545. The number of APOE [Symbol: see text] 4 alleles and plasma apolipoprotein E level were found to contribute most to this model, and the relationship between these variables and brain amyloid burden was explored
    corecore