18 research outputs found

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Surgical Practice in Girls with Congenital Adrenal Hyperplasia: An International Registry Study.

    Get PDF
    In this article international trends in surgical practice in girls with congenital adrenal hyperplasia (CAH) are evaluated. All cases that had been classified in the I-CAH/I-DSD registry as 46,XX CAH and who were born prior to 2017 were identified. Centers were approached to obtain information on surgical decision making. Of the 330 included participants, 208 (63.0%) presented within the first month of life, and 326 (98.8%) cases were assigned female. Genital surgery had been performed in 250 (75.8%). A total of 64.3, 89.2, and 96.8% of cases residing in Europe, South America and Asia, respectively, had at least one surgery. In a logistic regression model for the probability of surgery before the second birthday (early surgery) over time an increase of probability for early vaginal surgery could be identified, but not for clitoral surgery or both surgeries combined. Genitoplasty in girls with CAH remains controversial. This large international study provides a snapshot of current practice and reveals geographical and temporal differences. Fewer surgeries were reported for Europe, and there seems to be a significant trend towards aiming for vaginal surgery within the first 2 years of life

    Measurement of salivary adrenal-specific androgens as biomarkers of therapy control in 21-hydroxylase deficiency

    Get PDF
    Abstract Background Monitoring of hormonal control represents a key part of the management of congenital adrenal hyperplasia (CAH). Monitoring strategies remain suboptimal because they rely on frequent blood tests and are not specific for adrenal-derived hormones. Recent evidence suggests the crucial role of adrenal-specific 11-oxygenated-C19 androgens in the pathogenesis of CAH. Objective To establish a correlation between plasma and salivary adrenal-specific androgens in CAH as a noninvasive monitoring strategy. Design This prospective cross-sectional study recruited patients between 2015 and 2018. Setting Multicenter study including 13 tertiary centers in the United Kingdom. Participants Seventy-eight children with CAH and 62 matched healthy controls. Methods Using liquid chromatography–tandem mass spectrometry, plasma and salivary concentrations of five steroids were measured: 17-hydroxyprogesterone (17OHP), androstenedione (A4), testosterone (T), 11-hydroxyandrostenedione (11OHA4), and 11-ketotestosterone (11KT). The correlation between plasma and salivary steroids was analyzed to assess their use in clinical practice. Results Strong correlations between plasma and salivary steroid concentrations in patients with CAH were detected: 17OHP (rs = 0.871; P < 0.001), A4 (rs = 0.931; P < 0.001), T (rs = 0.867; P < 0.001), 11OH4A (rs = 0.876; P < 0.001), and 11KT (rs = 0.944; P < 0.001). These results were consistent for patient subgroups based on sex and age. Analysis of patient subgroups based on 17OHP concentrations established clear correlations between plasma and salivary concentrations of the adrenal-specific androgen 11KT. Conclusions The current study identified tight correlations between plasma and saliva for the adrenal-derived 11-oxygenated C19 androgen 11KT, as well as 17OHP and A4, which are widely used for monitoring treatment in CAH. This combination of steroid hormones will serve as an improved noninvasive salivary test for disease monitoring in patients with CAH

    Quality of Life in children and young people with congenital adrenal hyperplasia—UK nationwide multicenter assessment

    No full text
    Context Quality of life (QoL) has been inconsistently reported in children and young people (CYP) with congenital adrenal hyperplasia (CAH). Objective Assess QoL in CYP with CAH in the UK alongside biometric and androgen profiles. Design To define the evidence base for health care delivery, we conducted a cross-sectional study in CYP with CAH in the UK. Questionnaire results were compared with normative data and between groups, and modelled for association with sex, height, weight, body mass index, or steroid biomarkers of CAH control. Setting Tertiary care in 14 UK centers. Patients Results from 104 patients, 55% female, mean age 12.7 years (SD 3.0), paired responses from parents. Interventions Strengths and Difficulties questionnaire (SDQ) and pediatric QoL questionnaire. Main Outcome Measure Total QoL scores as assessed by SDQ and a pediatric QoL questionnaire in comparison to normative data. Results Total scores were worse in parents than normative data, but similar in patients. Patient QoL was rated better in social functioning but worse in emotional, school, and peer domains by patients, and worse in total scores and domains of peer problems, and psychosocial, emotional, and school functioning by parents. Parents consistently scored QoL of their children lower than their child. Larger height-SD score and lower weight-SD score were associated with better QoL. Girls with lower steroid biomarkers had worse SDQ scores. Conclusions In CYP with CAH, reduced height, increased weight, and hormonal biomarkers consistent with overtreatment were associated with worse QoL; addressing these problems should be prioritized in clinical management

    Increased referrals for congenital hyperinsulinism genetic testing in children with trisomy 21 reflects the high burden of non-genetic risk factors in this group

    Get PDF
    BACKGROUND: Hyperinsulinism results from inappropriate insulin secretion during hypoglycaemia. Down syndrome is causally linked to a number of endocrine disorders including Type 1 diabetes and neonatal diabetes. We noted a high number of individuals with Down syndrome referred for hyperinsulinism genetic testing, and therefore aimed to investigate whether the prevalence of Down syndrome was increased in our hyperinsulinism cohort compared to the population. METHODS: We identified individuals with Down syndrome referred for hyperinsulinism genetic testing to the Exeter Genomics Laboratory between 2008 and 2020. We sequenced the known hyperinsulinism genes in all individuals and investigated their clinical features. RESULTS: We identified 11 individuals with Down syndrome in a cohort of 2011 patients referred for genetic testing for hyperinsulinism. This represents an increased prevalence compared to the population (2.5/2011 expected vs. 11/2011 observed, p = 6.8 × 10(−5)). A pathogenic ABCC8 mutation was identified in one of the 11 individuals. Of the remaining 10 individuals, five had non‐genetic risk factors for hyperinsulinism resulting from the Down syndrome phenotype: intrauterine growth restriction, prematurity, gastric/oesophageal surgery, and asparaginase treatment for leukaemia. For five individuals no risk factors for hypoglycaemia were reported although two of these individuals had transient hyperinsulinism and one was lost to follow‐up. CONCLUSIONS: Down syndrome is more common in patients with hyperinsulinism than in the population. This is likely due to an increased burden of non‐genetic risk factors resulting from the Down syndrome phenotype. Down syndrome should not preclude genetic testing as coincidental monogenic hyperinsulinism and Down syndrome is possible
    corecore