43 research outputs found

    Antibiotic prescribing for upper respiratory infections among children in rural China: a cross-sectional study of outpatient prescriptions

    Get PDF
    Background: Overuse of antibiotics contributes to the development of antimicrobial resistance. Objective: This study aims to assess the condition of antibiotic use at health facilities at county, township and village levels in rural Guangxi, China. Methods: We conducted a cross-sectional study of outpatient antibiotic prescriptions in 2014 for children aged 2–14 years with upper respiratory infections (URI). Twenty health facilities were randomly selected, including four county hospitals, eight township hospitals and eight village clinics. Prescriptions were extracted from the electronic records in the county hospitals and paper copies in the township hospitals and village clinics. Results: The antibiotic prescription rate was higher in township hospitals (593/877, 68%) compared to county hospitals (2736/8166, 34%) and village clinics (96/297, 32%) (p < 0.001). Among prescriptions containing antibiotics, county hospitals were found to have the highest use rate of broad-spectrum antibiotics (82 vs 57% [township], vs 54% [village], p < 0.001), injectable antibiotics (65 vs 43% [township], vs 33% [village], p < 0.001) and multiple antibiotics (47 vs 15% [township], vs 0% [village], p < 0.001). Logistic regression showed that the likelihood of prescribing an antibiotic was significantly associated with patients being 6–14 years old compared with being 2–5 years old (adjusted odds ratio [aOR] = 1.3, 95% CI 1.2–1.5), and receiving care at township hospitals compared with county hospitals (aOR = 5.0, 95% CI 4.1–6.0). Prescriptions with insurance copayment appeared to lower the risk of prescribing antibiotics compared with those without (aOR = 0.8, 95% CI 0.7–0.9). Conclusions: Inappropriate use of antibiotics was high for outpatient childhood URI in the four counties of Guangxi, China, with the highest rate found in township hospitals. A significant high proportion of prescriptions containing antibiotics were broad-spectrum, by intravenous infusion or with multiple antibiotics, especially at county hospitals. Urgent attention is needed to address this challenge

    Deposition of impurity metals during campaigns with the JET ITER-like Wall

    No full text
    Post mortem analysis shows that mid and high atomic number metallic impurities are present in deposits on JET plasma facing components with the highest amount of Ni and W, and therefore the largest sink, being found at the top of the inner divertor. Sources are defined as "continuous" or "specific", in that "continuous" sources arise from ongoing erosion from plasma facing surfaces and "specific" are linked with specific events which decrease over time until they no longer act as a source. This contribution evaluates the sinks and estimates sources, and the balance gives an indication of the dominating processes. Charge exchange neutral erosion is found to be the main source of nickel, whereas erosion of divertor plasma facing components is the main source of tungsten. Specific sources are shown to have little influence over the global mid- and high-Z impurity concentrations in deposits

    First mirror test in JET for ITER: Complete overview after three ILW campaigns

    No full text
    The First Mirror Test for ITER has been carried out in JET with mirrors exposed during: (i) the third ILW campaign (ILW-3, 2015-2016, 23.33 h plasma) and (ii) all three campaigns, i.e. ILW-1 to ILW-3: 2011-2016, 63,52 h in total. All mirrors from main chamber wall show no significant changes of the total reflectivity from the initial value and the diffuse reflectivity does not exceed 3% in the spectral range above 500 nm. The modified layer on surface has very small amount of impurities such as D, Be, C, N, O and Ni. All mirrors from the divertor (inner, outer, base under the bulk W tile) lost reflectivity by 20-80% due to the beryllium-rich deposition also containing D, C, N, O, Ni and W. In the inner divertor N reaches 5 x 10(17) cm(-2), W is up to 4.3 x 10(17) cm(-2), while the content of Ni is the greatest in the outer divertor: 3.8 x 10(17) cm(-2). Oxygen-18 used as the tracer in experiments at the end of ILW-3 has been detected at the level of 1.1 x 10(16) cm(-2). The thickness of deposited layer is in the range of 90 nm to 900 nm. The layer growth rate in the base (2.7 pm s(-1)) and inner divertor is proportional to the exposure time when a single campaign and all three are compared. In a few cases, on mirrors located at the cassette mouth, flaking of deposits and erosion occurred

    Micro ion beam analysis for the erosion of beryllium marker tiles in a tokamak limiter

    No full text
    Beryllium limiter marker tiles were exposed to plasma in the Joint European Torus to diagnose the erosion of main chamber wall materials. A limiter marker tile consists of a beryllium coating layer (7-9 mu m) on the top of bulk beryllium, with a nickel interlayer (2-3 mu m) between them. The thickness variation of the beryllium coating layer, after exposure to plasma, could indicate the erosion measured by ion beam analysis with backscattering spectrometry. However, interpretations from broad beam backscattering spectra were limited by the non-uniform surface structures. Therefore, micro-ion beam analysis (mu-IBA) with 3 MeV proton beam for Elastic back scattering spectrometry (EBS) and PIXE was used to scan samples. The spot size was in the range of 3-10 mu m. Scanned areas were analysed with scanning electron microscopy (SEM) as well. Combining results from mu-IBA and SEM, we obtained local spectra from carefully chosen areas on which the surface structures were relatively uniform. Local spectra suggested that the scanned area (approximate to 600 mu m x 1200 mu m) contained regions with serious erosion with only 2-3 mu m coating beryllium left, regions with intact marker tile, and droplets with 90% beryllium. The nonuniform erosion, droplets mainly formed by beryllium, and the possible mixture of beryllium and nickel were the major reasons that confused interpretation from broad beam EBS

    14 MeV calibration of JET neutron detectors-phase 1: Calibration and characterization of the neutron source

    No full text
    In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e.The neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within ± 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances

    Investigation of deuterium trapping and release in the JET divertor during the third ILW campaign using TDS

    No full text
    Selected set of samples from JET ITER-Like Wall (JET-ILW) divertor tiles exposed in 2015-2016 has been analysed using Thermal Desorption Spectrometry (TDS). The deuterium (D) amounts obtained with TDS were compared with Nuclear Reaction Analysis (NRA). The highest amount of D was found on the top part of inner divertor which has regions with the thickest deposited layers as for divertor tiles removed in 2014. This area resides deep in the scrape-off layer and plasma configurations for the second (ILW-2, 2013-2014) and the third (ILW-3, 2015-2016) JET-ILW campaigns were similar. Agreement between TDS and NRA is good on the apron of Tile 1 and on the upper vertical region whereas on the lower vertical region of Tile 1 the NRA results are clearly smaller than the TDS results. Inner divertor Tile 3 has somewhat less D than Tiles 0 and 1, and the D amount decreases towards the lower part of the tile. The D retention at the divertor inner and outer corner regions is not symmetric as there is more D retention poloidally at the inner than at the outer divertor corner. In most cases the TDS spectra for the ILW-3 samples are different from the corresponding ILW-2 spectra because HD and D-2 release occurs at higher temperatures than from the ILW-2 samples indicating that the low energy traps have been emptied during the plasma operations and that D is either in the energetically deep traps or located deeper in the sample

    Radial variation of heat transport in L-mode JET discharges

    No full text
    In this paper, we analyze heat transport in the JET tokamak using data from its high resolution ECE diagnostic and analyses based on the transfer entropy (TE). The analysis reveals that heat transport is not smooth and continuous, but is characterized by 'trapping regions' separated by `minor transport barriers'. Meat may 'jump over' these barriers and when the heating power is raised, this 'jumping' behavior becomes more prominent. To check that our results are relevant for global heat transport, we deduced an effective diffusion coefficient from the TE results. Both its value and overall radial variation are consistent with heat diffusivities reported in literature. The detailed radial structure of the effective diffusion coefficient was shown to be linked to the mentioned minor transport barriers
    corecore