501 research outputs found

    Hyaluronan functionalized pH-responsive calcium carbonate nanoparticles for local treatment of breast cancer

    Get PDF
    [Excerpt] Introduction: Current radio- and chemotherapies are not efficient and many tumors remain resistant to conventional cancer treatments. Specific properties and signaling molecules from tumor microenvironment (TME) have been explored to increase treatment efficacy. An example is the acidic pH of the TME that has been explored to develop stimuli responsive release systems. Herein, we obtained biocompatible calcium carbonate (CaCO3) nanoparticles that are stable at neutral pH but dissolve at acidic conditions and evaluated their potential as a drug carrier for local cancer treatment. METHODS: CaCO3 nanoparticles were produced by co-precipitation of calcium chloride (CaCl2) and sodium carbonate (Na2CO3) in the presence of ethylene glycol [1]. Rhodamine was encapsulated as a model drug. The morphology and diameter of the nanoparticles were determined by scanning electron microscopy and dynamic laser scattering. The particles were coated by layer-by-layer (LbL) assembly of poly-L-lysine and hyaluronic acid (HA). The release was studied in phosphate buffered saline at pH 6.3 and 7.4. Cultures of two breast cancer cell lines (MDA-MB-231 and SK-BR-3) and a healthy epithelial cell line MCF10A (control) were observed under confocal laser scanning microscopy to assess particles internalization and their effect on cell viability (live/dead staining) and metabolic activity (Alamar Blue). [...]Portuguese Fundação para a Ciência e Tecnologia (FCT, grants CEECIND/02842/2017, SFRH/BPD/85790/2012; project PTDC/CTM-REF/0022/2020)

    Characterization of freeze-dried oxidized human red blood cells for pre-transfusion testing by synchrotron FTIR microspectroscopy live-cell analysis

    Get PDF
    Oxidative treatment of human red blood cells (RBCs) prior to freeze-drying appears to stabilize the RBCs to withstand dried storage at room temperature. To better understand the effects of oxidation and freeze-drying/rehydration on RBC lipids and proteins, single-cell measurements were performed by synchrotron-based Fourier transform infrared (FTIR) microspectroscopy ‘live-cell’ (unfixed) analysis. Lipid and protein spectral data of tert-butyl hydroperoxide (TBHP)-oxidized RBCs (oxRBCs), FDoxRBCs and control (untreated) RBCs were compared using principal component analysis (PCA) and band integration ratios. The oxRBCs and FDoxRBCs samples had similar spectral profiles that were clearly different to control RBCs. Spectral changes in the CH stretching region of oxRBCs and FDoxRBCs indicated the presence of increased saturated and shorter-chain lipids, consistent with lipid peroxidation and stiffening of the RBC membrane compared to control RBCs. The PCA loadings plot for the fingerprint region of control RBCs corresponding to the α-helical structure of hemoglobin, shows that oxRBCs and FDoxRBCs have conformational changes in the protein secondary structure to β-pleated sheets and β-turns. Finally, the freeze-drying process did not appear to compound or induce additional changes. In this context, FDoxRBCs could become a stable source of reagent RBCs for pre-transfusion blood serology testing. The synchrotron FTIR microspectroscopic live-cell protocol provides a powerful analytical tool to characterize and contrast the effects of different treatments on RBC chemical composition at the single cell level.</p

    Layer-by-layer coated calcium carbonate nanoparticles for targeting breast cancer cells

    Get PDF
    Breast cancer is resistant to conventional treatments due to the specific tumour microenvironment, the associated acidic pH and the overexpression of receptors that enhance cells tumorigenicity. Herein, we optimized the synthesis of acidic resorbable calcium carbonate (CaCO3) nanoparticles and the encapsulation of a low molecular weight model molecule (Rhodamine). The addition of ethylene glycol during the synthetic process resulted in a particle size decrease: we obtained homogeneous CaCO3 particles with an average size of 564 nm. Their negative charge enabled the assembly of layer-by-layer (LbL) coatings with surface-exposed hyaluronic acid (HA), a ligand of tumour-associated receptor CD44. The coating decreased Rhodamine release by two-fold compared to uncoated nanoparticles. We demonstrated the effect of nanoparticles on two breast cancer cell lines with different aggressiveness â SK-BR-3 and the more aggressive MDA-MB-231 â and compared them with the normal breast cell line MCF10A. CaCO3 nanoparticles (coated and uncoated) significantly decreased the metabolic activity of the breast cancer cells. The interactions between LbL-coated nanoparticles and cells depended on HA expression on the cell surface: more particles were observed on the surface of MDA-MB-231 cells, which had the thickest endogenous HA coating. We concluded that CaCO3 nanoparticles are potential candidates to carry low molecular weight chemotherapeutics and deliver them to aggressive breast cancer sites with an HA-abundant pericellular matrix. This work was supported by the Fundação para a Ciência e Tecnologia (project OncoNeoTreat, grant number PTDC/CTM-REF/0022/2020, co-financed by FCT – OE component); and the European program FEDER/FEEI. R.R.C. acknowledges FCT for support through grants 2022.00764.CEECIND and CEECIND/02842/2017. D.S.C. thanks FCT for the grant SFRH/BPD/85790/2012. Parts of Fig. A.1 were drawn by using pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/)

    Characterization of freeze-dried oxidized human red blood cells for pre-transfusion testing by synchrotron FTIR microspectroscopy live-cell analysis

    Get PDF
    Oxidative treatment of human red blood cells (RBCs) prior to freeze-drying appears to stabilize the RBCs to withstand dried storage at room temperature. To better understand the effects of oxidation and freeze-drying/rehydration on RBC lipids and proteins, single-cell measurements were performed by synchrotron-based Fourier transform infrared (FTIR) microspectroscopy ‘live-cell’ (unfixed) analysis. Lipid and protein spectral data of tert-butyl hydroperoxide (TBHP)-oxidized RBCs (oxRBCs), FDoxRBCs and control (untreated) RBCs were compared using principal component analysis (PCA) and band integration ratios. The oxRBCs and FDoxRBCs samples had similar spectral profiles that were clearly different to control RBCs. Spectral changes in the CH stretching region of oxRBCs and FDoxRBCs indicated the presence of increased saturated and shorter-chain lipids, consistent with lipid peroxidation and stiffening of the RBC membrane compared to control RBCs. The PCA loadings plot for the fingerprint region of control RBCs corresponding to the α-helical structure of hemoglobin, shows that oxRBCs and FDoxRBCs have conformational changes in the protein secondary structure to β-pleated sheets and β-turns. Finally, the freeze-drying process did not appear to compound or induce additional changes. In this context, FDoxRBCs could become a stable source of reagent RBCs for pre-transfusion blood serology testing. The synchrotron FTIR microspectroscopic live-cell protocol provides a powerful analytical tool to characterize and contrast the effects of different treatments on RBC chemical composition at the single cell level.</p

    Polymer electrolytes for electrochromic devices

    Get PDF
    Polymer electrolytes are currently the focus of much attention as potential electrolytes in electrochemical devices such as batteries, display devices and sensors. Generically, solid polymer electrolytes (SPEs) are mixtures of salts with soft polar polymers. SPEs have many advantages including high energy density, no risk of leakage, no issues related to the presence of solvent, wide electrochemical stability windows, simplified processability and light weight. With the goal of developing a new family of environmentally friendly multifunctional biohybrid materials displaying high ionic conductivity we have produced in the present work, flexible films based on different polymers or hybrids incorporating different salts. The polymer electrolytes studied here have been characterized by means of Differential Scanning Calorimetry, Thermogravimetric Analysis, X-ray diffraction, Polarized Optical Microscopy, complex impedance spectroscopy and cyclic voltammetry. An evaluation of the performance of the sample with the highest conductivity as electrolyte in all solid-state ECDs was performed

    Prevention of encrustation and blockage of urinary catheters by:Proteus mirabilis via pH-triggered release of bacteriophage

    Get PDF
    The crystalline biofilms of Proteus mirabilis can seriously complicate the care of patients undergoing long-term indwelling urinary catheterisation. Expression of bacterial urease causes a significant increase in urinary pH, leading to the supersaturation and precipitation of struvite and apatite crystals. These crystals become lodged within the biofilm, resulting in the blockage of urine flow through the catheter. Here, we describe an infection-responsive surface coating for urinary catheters, which releases a therapeutic dose of bacteriophage in response to elevated urinary pH, in order to delay catheter blockage. The coating employs a dual-layered system comprising of a lower hydrogel 'reservoir' layer impregnated with bacteriophage, capped by a 'trigger' layer of the pH-responsive polymer poly(methyl methacrylate-co-methacrylic acid) (EUDRAGIT®S 100). Evaluation of prototype coatings using a clinically reflective in vitro bladder model system showed that catheter blockage time was doubled (13 h to 26 h (P < 0.05)) under conditions of established infection (108 CFU ml-1) in response to a 'burst-release' of bacteriophage (108 PFU ml-1). Coatings were stable both in the absence of infection, and in the presence of urease-negative bacteria. Quantitative and visual analysis of crystalline biofilm reduction show that bacteriophage constitute a promising strategy for the prevention of catheter blockage, a clinical problem for which there is currently no effective control method

    Design, Characterization and Biological Properties

    Get PDF
    Funding Information: This work was financed by national funds from FCT—Fundação para a Ciência e a Tecnologia, I.P., in the scope of projects UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences—UCIBIO, the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy—i4HB, project UIDP/04129/2020 of LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, and projects LA/P/0037/2020, UIDP/50025/2020 and UIDB/50025/2020 of the Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication—i3N. Diana Araújo and Catarina Roma-Rodrigues were funded by FCT/MCTES, with grant numbers SFRH/BD/140829/2018 and SFRH/BPD/124612/2016, respectively. Publisher Copyright: © 2023 by the authors.FucoPol, a fucose-rich polyanionic polysaccharide, was used for the first time for the preparation of hydrogel membranes (HMs) using Fe3+ as a crosslinking agent. This study evaluated the impact of Fe3+ and FucoPol concentrations on the HMs’ strength. The results show that, above 1.5 g/L, Fe3+ concentration had a limited influence on the HMs’ strength, and varying the FucoPol concentration had a more significant effect. Three different FucoPol concentrations (1.0, 1.75 and 2.5 wt.%) were combined with Fe3+ (1.5 g/L), resulting in HMs with a water content above 97 wt.% and an Fe3+ content up to 0.16 wt.%. HMs with lower FucoPol content exhibited a denser porous microstructure as the polymer concentration increased. Moreover, the low polymer content HM presented the highest swelling ratio (22.3 ± 1.8 g/g) and a lower hardness value (32.4 ± 5.8 kPa). However, improved mechanical properties (221.9 ± 10.2 kPa) along with a decrease in the swelling ratio (11.9 ± 1.6 g/g) were obtained for HMs with a higher polymer content. Furthermore, all HMs were non-cytotoxic and revealed anti-inflammatory activity. The incorporation of FucoPol as a structuring agent and bioactive ingredient in the development of HMs opens up new possibilities for its use in tissue engineering, drug delivery and wound care management.publishersversionpublishe

    Optimization of Au:CuO thin films by plasma surface modification for high-resolution LSPR gas sensing at room temperature

    Get PDF
    In this study, thin films composed of gold nanoparticles embedded in a copper oxide matrix (Au:CuO), manifesting Localized Surface Plasmon Resonance (LSPR) behavior, were produced by reactive DC magnetron sputtering and post-deposition in-air annealing. The effect of low-power Ar plasma etching on the surface properties of the plasmonic thin films was studied, envisaging its optimization as gas sensors. Thus, this work pretends to attain the maximum sensing response of the thin film system and to demonstrate its potential as a gas sensor. The results show that as Ar plasma treatment time increases, the host CuO matrix is etched while Au nanoparticles are uncovered, which leads to an enhancement of the sensitivity until a certain limit. Above such a time limit for plasma treatment, the CuO bonds are broken, and oxygen is removed from the film’s surface, resulting in a decrease in the gas sensing capabilities. Hence, the importance of the host matrix for the design of the LSPR sensor is also demonstrated. CuO not only provides stability and protection to the Au NPs but also promotes interactions between the thin film’s surface and the tested gases, thereby improving the nanocomposite film’s sensitivity. The optimized sensor sensitivity was estimated at 849 nm/RIU, which demonstrates that the Au-CuO thin films have the potential to be used as an LSPR platform for gas sensors.This research was sponsored by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UIDB/04650/2020 and by the project CO2Plasmon with reference EXPL/CTM-REF/0750/2021. M.P. acknowledges her Ph.D. Scholarship from FCT, with reference SFRH/BD/137076/2018. Diana I. Meira acknowledges her Ph.D. Scholarship from FCT, with reference SFRH/BD/143262/2019

    Electrochromic device composed of a Di-Urethanesil electrolyte incorporating lithium triflate and 1-Butyl-3-Methylimidazolium chloride

    Get PDF
    A di-urethane cross-linked poly(oxyethylene)/silica hybrid matrix [di-urethanesil, d-Ut(600)], synthesized by the sol-gel process, was doped with lithium triflate (LiCF3SO3) and the 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) ionic liquid. The as-produced xerogel film is amorphous, transparent, flexible, homogeneous, hydrophilic, and has low nanoscale surface roughness. It exhibits an ionic conductivity of 3.64 x 10(-6) and 5.00 x 10(-4) S cm(-1) at 21 and 100 degrees C, respectively. This material was successfully tested as electrolyte in an electrochromic device (ECD) with the glass/ITO/a-WO3/d-Ut(600)(10)LiCF3SO3[Bmim]Cl/c-NiO/ITO/glass configuration, where a-WO3 and c-NiO stand for amorphous tungsten oxide and crystalline nickel oxide, respectively. The device demonstrated attractive electro-optical performance: fast response times (1-2 s for coloring and 50 s for bleaching), good optical memory [loss of transmittance (T) of only 41% after 3 months, at 555 nm], four mode modulation [bright mode (+3.0 V, T = 77% at 555 nm), semi-bright mode (-1.0 V, T = 60% at 555 nm), dark mode (-1.5 V, T = 38 % at 555 nm), and very dark mode (-2.0 V, T = 11% and -2.5 V, T = 7% at 555 nm)], excellent cycling stability denoting improvement with time, and high coloration efficiency [CEin = -6727 cm(2) C-1 (32th cycle) and CEout = +2794 cm(2) C-1 (480th cycle), at 555 nm].The authors are grateful to Fundacao para a Ciencia e a Tecnologia (FCT) and when applicable by FEDER under the PT2020 Partnership Agreement for financial support under contracts PEst-OE/SAU/UI0709/2014, UID/Multi/00709/2013, UID/QUI/00686/2016, UID/QUI/00686/2018, UID/QUI/00686/2019, PEst-OE/QUI/UI0616/2016, FCOMP-01-0124-FEDER037271, UID/CTM/50011/2013, LUMECD project (POCI01-0145-FEDER-016884 and PTDC/CTM-NAN/0956/2014), UniRCell project (SAICTPAC/0032/2015 and POCI-01-0145FEDER-016422). RP and SN acknowledge FCT-MCTES for grants (SFRH/BPD/87759/2012 and LUMECD, respectively). RP thanks FCT-UM for the contracts in the scope of Decreto-Lei 57/2016 and 57/2017. MF acknowledges FCTUTAD for the contract in the scope of Decreto-Lei 57/2016 -Lei 57/2017. HG acknowledges projects POCI-010145-FEDER-030858 and PTDC/BTM-MAT/30858/2017 for financial support
    • …
    corecore