2,842 research outputs found

    Antecedents of the Sharing Economy in a Pandemic Scenario: Prosocial Attitudes, Past Behaviour and Transformation Expectations

    Get PDF
    The COVID-19 pandemic is expected to have a significant impact on most sharing economy activities, and at present, it is particularly challenging to achieve a consensual model to predict sharing economy behaviour. Based on empirical and theoretical premises established before the pandemic, we intend to explore the association between a set of psychosocial variables (i.e., cooperation, environmental awareness, past behaviour) and sharing economy behaviour, particularly the use of shared assets (i.e., cars and accommodation) during the COVID-19 pandemic. Furthermore, the present study analyses the mediating role of transformation expectations, as the decision to engage or not in sharing behaviour may be influenced by beliefs about the consequences of those actions from the user’s perspective. This study comprised a total of 596 participants. Data was collected through a self-administered questionnaire and was statistically analysed and interpreted using PLS 3.0. Structural Equation Modelling statistical software. Contrary to our predictions, the results show that cooperation negatively influenced the willingness to participate in sharing activities during the COVID-19 pandemic, that environmental awareness was not a significant predictor, and that past sharing behaviour has the strongest influence on the willingness to share during pandemic times. Finally, the mediating effect of transformation expectations was significant in both associations, i.e., pro-environmental consciousness and past sharing experiences, and the willingness to adopt sharing behaviour during COVID-19.Se espera que la pandemia de COVID-19 tenga un impacto importante en la mayoría de las actividades de la economía colaborativa, y en la actualidad, es particularmente difícil lograr un modelo consensual para predecir el comportamiento de la economía colaborativa. Sobre la base de premisas empíricas y teóricas establecidas antes de la pandemia, pretendemos explorar la asociación entre un conjunto de variables psicosociales (es decir, cooperación, consciencia ambiental, comportamiento pasado) y el comportamiento de la economía colaborativa, en particular el uso de activos compartidos (automóviles y alojamiento), durante la pandemia de COVID-19. Además, el presente estudio analiza el papel mediador de las expectativas de transformación, ya que la decisión de participar o no en el comportamiento de compartir puede estar influenciada por creencias sobre las consecuencias de esas acciones desde la perspectiva del usuario. Este estudio comprendió un total de 596 participantes. Los datos se recopilaron a través de un cuestionario autoadministrado y se analizaron e interpretaron estadísticamente utilizando el PLS 3.0., un software estadístico de modelación de ecuaciones estructurales. Contrariamente a nuestras predicciones, los resultados muestran que la cooperación influyó negativamente en la voluntad de participar en actividades compartidas durante la pandemia de COVID-19, que la conciencia ambiental no fue un predictor significativo y que el comportamiento de compartir en el pasado tiene la influencia más fuerte en la voluntad de compartir durante tiempos de pandemia. Finalmente, el efecto mediador de las expectativas de transformación fue significativo en ambas asociaciones, es decir, la conciencia proambiental y las experiencias pasadas de intercambio, y la disposición a adoptar un comportamiento de intercambio durante COVID-19.info:eu-repo/semantics/publishedVersio

    Milk fatty acid composition and associated rumen lipolysis and fatty acid hydrogenation when feeding forages from intensively managed or semi-natural grasslands

    Get PDF
    In order to evaluate the effect of replacing intensive forage by semi-natural grassland products on rumen lipid metabolism and milk fatty acid composition, four lactating and rumen canulated Holstein cows were used in a 4×4 Latin square design. Four different diets were fed: diet 100 IM - 100% intensively managed silage (IM), diet 20 SPP - 80% IM plus 20% semi-natural but species poor silage (SPP), diet 60 SPP - 40% IM plus 60% SPP and diet 60 SPR - 40% IM plus 60% semi-natural species rich silage (SPR). The silages showed significant differences in total fat content and in proportions of C18:2 n-6 and C18:3 n-3. Despite the reduced dietary supply of C18:3 n-3 with diets 60 SPP and 60 SPR, differences in milk C18:3 n-3 were small, suggesting higher recoveries of C18:3 n-3. Presumably, the latter are related to a higher transfer efficiency of C18:3 n-3 from the duodenum to the mammary gland, since rumen biohydrogenation, estimated from rumen pool size and first order rumen clearance kinetics, were similar among diets. CLA c9t11 in milk from cows fed diet 60 SPR were almost doubled compared to feeding one of the other diets. This has been related to the partial inhibition of rumen biohydrogenation of C18:3 n-3 and/or C18:2 n-6, as suggested by the increased proportions of hydrogenation isomers and reduced stearic acid proportions in rumen pool samples. In conclusion, the results suggest that the use of semi-natural grasslands in the diet of the animals reduce to some extent complete rumen biohydrogenation, which leads to an increase in milk CLA

    Anaerobic digestion of OMW : intermittent feeding strategy and LCFA oxidation profile

    Get PDF
    ManuscriptAn intermittent feeding strategy was applied to the anaerobic treatment of raw olive mill wastewater (OMW). Two reactors were operated under influent concentrations of 5 to 50 g COD L-1. Two and one batch (feed-less) periods were applied to reactor R1 and R2, respectively, operating in continuous thenceforth. It was demonstrated that the intermittent feeding of OMW improved the mineralization of accumulated Long Chain Fatty Acids (LCFA) inside the reactor. Nevertheless, LCFA accumulated again when the organic loading rate was increased from 2 to 3 and 5 kg COD m-3 d-1. The profiles of LCFA, obtained with OMW digestion, were different from previous studies with synthetic effluents. At the beginning of reactors operation, oleate was the main LCFA compound (~50%) followed by palmitate. Afterwards, a shift in the LCFA pattern accumulation was noticed for both reactors. At periods with higher OMW concentrations (30-50 g COD L-1, 3-5 kg COD m-3 d-1) palmitate was the main LCFA accumulated with 69% at R1 and 54% at R2. For real oily wastewaters, a periodically batch period could be a practical solution to maintain low values of LCFA inside the reactor. The addition of a nitrogen source was essential to enhance the methane yield

    Strategies for lipids and phenolics degradation in the anaerobic treatment of olive mill wastewater

    Get PDF
    Strategies are proposed for the anaerobic treatment of lipid and phenolic-rich effluents, specifically the raw olive mill wastewater (OMW). Two reactors were operated under OMW influent concentrations from 5 to 48 g COD L-1 and Hydraulic Retention Time between 10 and 5 days. An intermittent feeding was applied whenever the reactors showed a severe decay in the methane yield. This strategy improved the mineralization of oleate and palmitate, which were the main accumulated Long Chain Fatty Acids (LCFA), and also promoted the removal of resilient phenolic compounds, reaching remarkable removal efficiencies of 60% and 81% for two parallel reactors at the end of a feed-less period. A maximum biogas production of 1.4 m3 m-3 d-1 at an Organic Loading Rate of 4.8 kg COD m-3 d-1 was obtained. Patterns of individual LCFA oxidation during the OMW anaerobic digestion are presented and discussed for the first time. The supplementation of a nitrogen source boosted immediately the methane yield from 21 and 18 to 76 and 93% in both reactors. The typical problems of sludge flotation and washout during the anaerobic treatment of this oily wastewater were overcome by biomass retention, according to the Inverted Anaerobic Sludge Blanket (IASB) reactor concepts. This work demonstrates that it is possible to avoid a previous detoxification step by implementing adequate operational strategies to the anaerobic treatment of OMW.The authors acknowledge the financial support of the “Fundação para a Ciência e a Tecnologia”, FCT/MCTES, through the project PTDC/ENR/69755/2006 and also through the grants given to Marta Gonçalves SFRH/BD/40746/2007 and José Carlos Costa SFRH/BDP/ 48962 /2008. The authors thank Tânia Ferreira for the help in LCFA analysis and Ana Cavaleiro for her scientific support

    Considering the stiffness of the forming tools in the numerical analysis of the ironing process

    Get PDF
    Ironing can occur in cylindrical cup drawing whenever the thickness of the drawn flange is larger than the gap between the punch and the die. This is particularly relevant for materials that present r-values lower than 1.0, such as the aluminium alloys, since they tend to present more thickening of the flange. The aim of this study is to evaluate numerically the impact of the elastic deformation of the forming tools on the final cup geometry, i.e., the earing profile and the evolution of thickness along the circumferential direction, at different heights. Different contact conditions are also analysed since they strongly affect both the thickness strain and the earing profile. The process conditions considered are the ones from EXACT, the ESAFORM Benchmark 2021, enabling the comparison with experimental results. Considering the deformation of the forming tools mainly impacts the ironing stage, enabling predicting wall thickness values larger than the gap between the punch and the die.The authors gratefully acknowledge the financial support of the Portuguese Foundation for Science and Technology (FCT) under projects with reference 2022.08459.PTDC, UIDB/00285/2020 and LA/P/0112/2020

    Microalgae-bacterial granular sludge systems - on the road for more sustainable processes in the aquaculture sector

    Get PDF
    With population growth and stagnation of capture fisheries, the aquaculture sector has been challenged to achieve remarkable production targets to meet the ever-increasing fish demand. However, land-based aquaculture industries need to capture high water volumes from nearby water bodies to ensure an adequate production and, consequently, high wastewater volumes, containing organic carbon, nutrients, and often contaminants of emerging concern, are produced. If not properly handled, aquaculture effluents pose a threat to receiving aquatic ecosystems. The rapid expansion of these industries, facing the increased demand for food worldwide, is only possible if more sustainable practices are adopted. To face the current water shortages and protect water resources, the development of environmentally friendly treatment systems that allow water recirculation is of utmost importance. This work aimed to develop a microalgae-bacteria granular sludge system able to efficiently treat marine aquaculture effluents so they can meet the requirements for recirculation. A photo-sequencing batch reactor was inoculated with a phototrophic microbial consortium obtained from water streams in a marine aquaculture facility and was fed with wastewater mimicking marine aquaculture streams. The aggregation of the microbial biomass occurred rapidly and, on day-21, ca. 49% of the total reactor biomass was in the form of granules. The system exhibited high and stable organic carbon removal (>80%), even when florfenicol, an antibiotic widely used in aquaculture, was present in the wastewater. Concerning the nitrogen content, a high-chemical quality effluent was obtained, complying with ammonium, nitrite, and nitrate concentrations for water recirculation within a marine aquaculture farm, even in periods where florfenicol was present in the wastewater. In addition, the dissolved oxygen levels in the treated effluents where within the ideal range for fish growth thus reducing the need for oxygenation and, consequently, the farms operational costs. Additionally, the coexistence of microalgae and bacteria within the granules allowed to treat wastewater at low air flow rates potentially reducing the energy needed for system’s aeration. Microalgae-bacterial granular sludge systems can contribute for the aquaculture sector sustainability as they enable to reduce energy and water usage whilst ensuring environmental protection.info:eu-repo/semantics/publishedVersio

    Recycling of marine aquaculture wastewater using a microalgae-bacterial granular sludge system

    Get PDF
    Aquaculture has become the fastest growing animal food-producing sector. In a near future, an intensification of the aquaculture practices is expected to cope with the ever-increasing fish demand. However, for land-based aquaculture farms, this growth implies the capture of higher water volumes from nearby water bodies and, consequently, the discharge of higher volumes of wastewater, containing organic carbon, nutrients, and often recalcitrant pollutants (e.g. pharmaceuticals). The expansion of the land-based aquaculture sector is currently offset due to the lack of space and water supplies, but also due to environmental concerns. Therefore, there is a need for innovative wastewater treatment systems able to reduce energy input, to improve resource use and to reduce the environmental impact. In the present study, microalgae-bacterial granules were developed from a phototrophic microbial consortium autochthonous to the water streams of a marine aquaculture facility. The granular biomass was able to efficiently treat marine aquaculture streams, even when sporadically the antibiotic florfenicol was present, with pollutant reaching levels that allowed water recirculation in fish farms. The ammonium, nitrite, and nitrate concentrations in the treated effluents were below the toxicity limits for marine fish and, the dissolved oxygen levels were within the ideal range for water recirculation. The granules microbial community was dynamic and, its structure was susceptible and adaptable to the changing operational reactor conditions such as the presence of the antibiotic florfenicol. The microbial diversity and functional redundancy within the microbial community seemed to be crucial for the adaptability of the system to the stressors presence. Th symbiosis established between microalgae and bacteria within granules allowed for the effective and environmentally sustainable treatment of marine aquaculture wastewater.info:eu-repo/semantics/publishedVersio

    Bioremediation of coastal aquaculture effluents spiked with florfenicol using microalgae-based granular sludge – a promising solution for recirculating aquaculture systems

    Get PDF
    Aquaculture is a crucial industry in the agri-food sector, but it is linked to serious environmental problems. There is a need for efficient treatment systems that allow water recirculation to mitigate pollution and water scarcity. This work aimed to evaluate the self-granulation process of a microalgae-based consortium and its capacity to bioremediate coastal aquaculture streams that sporadically contain the antibiotic florfenicol (FF). A photo-sequencing batch reactor was inoculated with an autochthonous phototrophic microbial consortium and was fed with wastewater mimicking coastal aquaculture streams. A rapid granulation process occurred within ca. 21 days, accompanied by a substantially increase of extracellular polymeric substances in the biomass. The developed microalgae-based granules exhibited high and stable organic carbon removal (83-100%). Sporadically wastewater contained FF which was partially removed (ca. 5.5-11.4%) from the effluent. In periods of FF load, the ammonium removal slightly decreased (from 100 to ca. 70%), recovering 2 days after FF feeding ceased. A high-chemical quality effluent was obtained, complying with ammonium, nitrite, and nitrate concentrations for water recirculation within a coastal aquaculture farm, even during FF feeding periods. Members belonging to the Chloroidium genus were predominant in the reactor inoculum (ca. 99%) but were replaced from day-22 onwards by an unidentified microalga from the phylum Chlorophyta (>61%). A bacterial community proliferated in the granules after reactor inoculation, whose composition varied in response to feeding conditions. Bacteria from the Muricauda and Filomicrobium genera, Rhizobiaceae, Balneolaceae, and Parvularculaceae families, thrived upon FF feeding. This study demonstrates the robustness of microalgae-based granular systems for aquaculture effluent bioremediation, even during periods of FF loading, highlighting their potential as a feasible and compact solution in recirculation aquaculture systems.info:eu-repo/semantics/publishedVersio

    Functional and conservation value of fruits - a lab approach

    Full text link
    [EN] Fruits are a relevant source of phenols and ascorbate, biomolecules which scavenge reactive oxygen species. For this reason, they are considered as healthy for the human being. Fruits quality depends on their levels of antioxidants and enzyme activities that ensure their conservation. The aim of this work was to plan and execute a laboratory class of Enzymology, a discipline of Biochemistry degree of University of Évora, Portugal, for determining the functional and conservation value of three different fruits types, sold in the market of Évora, Portugal. The development of this activity allowed that students of a pilot class participate in a laboratory activity which intended to compare the content of phenols, ascorbate, and polyphenol oxidase enzyme activity present in apple, peach and blueberries pulp. At Lab activity, the students successfully determined markers of functional and conservation value of selected fruits. The skills acquired by the students, in terms of obtaining fruit pulp and their composition in antioxidants, stimulated their commitment degree on the application of biochemistry in the everyday, acquiring thereby significant learning, with a high degree of satisfaction.This work was funded by National Funds through FCT - Foundation for Science and Technology under the Project UID/AGR/00115/2013.Alves-Pereira, I.; Capela-Pires, J.; Candeias, M.; Ferreira, R. (2020). Functional and conservation value of fruits - a lab approach. En 6th International Conference on Higher Education Advances (HEAd'20). Editorial Universitat Politècnica de València. (30-05-2020):427-435. https://doi.org/10.4995/HEAd20.2020.11082OCS42743530-05-202
    corecore