175 research outputs found

    Two-pion decay modes of the N*(1440) in n p -> d pi pi

    Get PDF
    A simple model for the n p -> d pi pi reaction has been developed. It is shown that the deuteron momentum spectra measured at T_n = 795 MeV can be understood in terms of the Roper excitation and its N pi pi decay modes. A similar pattern, recently observed in p p -> p p pi+ pi-, can be explained in the same way.Comment: 3 pages, 5 figures. Presented at 16th International Conference on Few-Body Problems in Physics, Taipei, Taiwan, 6-10 March 200

    Quasielastic Scattering at MiniBooNE Energies

    Full text link
    We present our description of neutrino induced charged current quasielastic scattering (CCQE) in nuclei at energies relevant for the MiniBooNE experiment. In our framework, the nucleons, with initial momentum distributions according to the Local Fermi Gas model, move in a density- and momentum-dependent mean field potential. The broadening of the outgoing nucleons due to nucleon-nucleon interactions is taken into account by spectral functions. Long range (RPA) correlations renormalizing the electroweak strength in the medium are also incorporated. The background from resonance excitation events that do not lead to pions in the final state is also predicted by propagating the outgoing hadrons with the Giessen semiclassical BUU model in coupled channels (GiBUU). We achieve a good description of the shape of the CCQE Q2 distribution extracted from data by MiniBooNE, thanks to the inclusion of RPA correlations, but underestimate the integrated cross section when the standard value of MA = 1 GeV is used. Possible reasons for this mismatch are discussed.Comment: 6 pages, 4 figures, Proceedings of the Sixth International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt09), May 18-22, Sitges, Barcelona, Spai

    Single photon events from neutral current interactions at MiniBooNE

    Get PDF
    The MiniBooNE experiment has reported results from the analysis of νe\nu _e and νˉe\bar \nu _e appearance searches, which show an excess of signal-like events at low reconstructed neutrino energies, with respect to the expected background. A significant component of this background comes from photon emission induced by (anti)neutrino neutral current interactions with nucleons and nuclei. With an improved microscopic model for these reactions, we predict the number and distributions of photon events at the MiniBooNE detector. Our results are compared to the MiniBooNE in situ estimate and to other theoretical approaches. We find that, according to our model, neutral current photon emission from single-nucleon currents is insufficient to explain the events excess observed by MiniBooNE in both neutrino and antineutrino modes.Comment: 10 pages, 8 figures; error analysis improved; accepted in PL

    Charged current weak production of the Delta resonance

    Full text link
    The charge changing weak production of Delta in nucleons and nuclei is studied. The reactions e^{-} p -> Delta^{0} \nu_{e} and e^{+} p -> Delta^{++} \bar{\nu}_{e} are considered as a possible source of information about the weak N-Delta transition form factors. The low q^2 BNL data on neutrino production of Delta are used to extract the axial vector N-Delta coupling, taking into account the deuteron structure and the Delta width. Finally, pion production induced by neutrinos in ^{16}O in the Delta region, relevant to atmospheric neutrino experiments, is investigated.Comment: 4 pages, 2 figures. To appear in Proceedings of PANIC9

    Neutral current neutrino-nucleus interactions at intermediate energies

    Get PDF
    We have extended our model for charged current neutrino-nucleus interactions to neutral current reactions. For the elementary neutrino-nucleon interaction, we take into account quasielastic scattering, Delta excitation and the excitation of the resonances in the second resonance region. Our model for the neutrino-nucleus collisions includes in-medium effects such as Fermi motion, Pauli blocking, nuclear binding, and final-state interactions. They are implemented by means of the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) coupled-channel transport model. This allows us to study exclusive channels, namely pion production and nucleon knockout. We find that final-state interactions modify considerably the distributions through rescattering, charge-exchange and absorption. Side-feeding induced by charge-exchange scattering is important in both cases. In the case of pions, there is a strong absorption associated with the in-medium pionless decay modes of the Delta, while nucleon knockout exhibits a considerable enhancement of low energy nucleons due to rescattering. At neutrino energies above 1 GeV, we also obtain that the contribution to nucleon knockout from Delta excitation is comparable to that from quasielastic scattering.Comment: 16 pages, 10 figures; v2: version to be published in Phys. Rev. C, comparison with results of Paschos et al. remove

    Neutrino interactions with nucleons and nuclei at intermediate energies

    Full text link
    We investigate neutrino-nucleus collisions at intermediate energies incorporating quasielastic scattering and Delta(1232) excitation as elementary processes, together with Fermi motion, Pauli blocking and mean-field potentials in the nuclear medium. A full coupled-channel treatment of final state interactions is achieved with a semiclassical BUU transport model. Results for inclusive reactions and nucleon knockout are presented.Comment: Proceedings of PANIC'05, 3 pages, 3 figure
    • …
    corecore