751 research outputs found

    One loop calculations on the Wess-Zumino-Witten anomalous functional at finite temperature

    Get PDF
    We analyze the finite temperature (T) extension of the Wess-Zumino- Witten functional, discussed in a previous work, to one loop in chiral perturbation theory. As a phenomenological application, we calculate finite temperature corrections to the amplitude of the π0\pi^0 decay into two photons. This calculation is performed in three limits : i)T/Mπ<<1T/M_{\pi}<<1, ii)the chiral limit at finite T and iii)T/Mπ>>1T/M_{\pi}>>1 (MπM_{\pi} being the pion mass). The TT-corrections tend to vanish in the chiral limit, where only the kaon contribution remains (although it is exponentially suppressed).Comment: Latex, 13 pages and 3 figures avalaible upon reques

    On the Wess-Zumino-Witten anomalous functional at finite temperature

    Get PDF
    We discuss the finite temperature extension of the anomalous Wess-Zumino -Witten lagrangian. The finite temperature S^1\times S^3 compactification makes a structure in disconnected sectors, corresponding to different baryon numbers appear naturally. The consistency of the anomalous functional is proved for arbitrary baryon number configurations. The anomalous behavior of the functional is shown to be consistent with the absence of finite temperature corrections to chiral anomalies in QCD, for each baryon number sector.Comment: 16 pages, FT/UCM/9/9

    Dimensional Reduction and Quantum-to-Classical Reduction at High Temperatures

    Full text link
    We discuss the relation between dimensional reduction in quantum field theories at finite temperature and a familiar quantum mechanical phenomenon that quantum effects become negligible at high temperatures. Fermi and Bose fields are compared in this respect. We show that decoupling of fermions from the dimensionally reduced theory can be related to the non-existence of classical statistics for a Fermi field.Comment: 11 pages, REVTeX, revised v. to be published in Phys. Rev. D: some points made more explici

    Decoherence in a Josephson junction qubit

    Full text link
    The zero-voltage state of a Josephson junction biased with constant current consists of a set of metastable quantum energy levels. We probe the spacings of these levels by using microwave spectroscopy to enhance the escape rate to the voltage state. The widths of the resonances give a measurement of the coherence time of the two states involved in the transitions. We observe a decoherence time shorter than that expected from dissipation alone in resonantly isolated 20 um x 5 um Al/AlOx/Al junctions at 60 mK. The data is well fit by a model including dephasing effects of both low-frequency current noise and the escape rate to the continuum voltage states. We discuss implications for quantum computation using current-biased Josephson junction qubits, including the minimum number of levels needed in the well to obtain an acceptable error limit per gate.Comment: 4 pages, 6 figure

    Low-Lying States of the Six-Dimensional Fractional Superstring

    Full text link
    The K=4K=4 fractional superstring Fock space is constructed in terms of \bZ_4 parafermions and free bosons. The bosonization of the \bZ_4 parafermion theory and the generalized commutation relations satisfied by the modes of various parafermion fields are reviewed. In this preliminary analysis, we describe a Fock space which is simply a tensor product of \bZ_4 parafermion and free boson Fock spaces. It is larger than the Lorentz-covariant Fock space indicated by the fractional superstring partition function. We derive the form of the fractional superconformal algebra that may be used as the constraint algebra for the physical states of the FSS. Issues concerning the associativity, modings and braiding properties of the fractional superconformal algebra are also discussed. The use of the constraint algebra to obtain physical state conditions on the spectrum is illustrated by an application to the massless fermions and bosons of the K=4K=4 fractional superstring. However, we fail to generalize these considerations to the massive states. This means that the appropriate constraint algebra on the fractional superstring Fock space remains to be found. Some possible ways of doing this are discussed.Comment: 69 pages, LaTeX, CLNS 91/112

    Induced Parity-Breaking Term at Finite Chemical Potential and Temparature

    Full text link
    We exactly calculated the parity-odd term of the effective action induced by the fermions in 2+1 dimensions at finite chemical potential and finite temperature. It shows that gauge invariance is still respected. A more gerneral class of background configurations is considered. The knowledge of the reduced 1+1 determinant is required in order to draw exact conclusions about the gauge invariance of the parity-odd term in this latter case.Comment: 8 pages, LATEX, no figure

    A Quantum-mechanical Approach for Constrained Macromolecular Chains

    Full text link
    Many approaches to three-dimensional constrained macromolecular chains at thermal equilibrium, at about room temperatures, are based upon constrained Classical Hamiltonian Dynamics (cCHDa). Quantum-mechanical approaches (QMa) have also been treated by different researchers for decades. QMa address a fundamental issue (constraints versus the uncertainty principle) and are versatile: they also yield classical descriptions (which may not coincide with those from cCHDa, although they may agree for certain relevant quantities). Open issues include whether QMa have enough practical consequences which differ from and/or improve those from cCHDa. We shall treat cCHDa briefly and deal with QMa, by outlining old approaches and focusing on recent ones.Comment: Expands review published in The European Physical Journal (Special Topics) Vol. 200, pp. 225-258 (2011
    • 

    corecore