33,249 research outputs found

    Optical and near-infrared spectrophotometric properties of Long Period Variables and other luminous red stars

    Get PDF
    Based on a new and large sample of optical and near-infrared spectra obtained at the Mount Stromlo and Siding Spring Observatories (Lancon & Wood 1998; Lancon & Wood, in preparation), spectrophotometric properties of cool oxygen- and carbon-rich Long Period Variables and supergiants are presented. Temperatures of oxygen-rich stars are assigned by comparison with synthetic spectra computed from up-to-date oxygen-rich model atmosphere grids. The existence of reliable optical and near-infrared temperature indicators is investigated. A narrow relation between the bolometric correction BC(I) and the broad-band colour I-J is obtained for oxygen-rich cool stars. The ability of specific near-infrared indices to separate luminosity classes, atmospheric chemistry or variability subtypes is discussed. Some comments are also given on extinction effects, water band strengths in Long Period Variables and the evaluation of 12CO/13CO ratio in red giants.Comment: 14 pages, 21 figures, Latex, accepted for publication in Astronomy and Astrophysics main journal. Also available at http://www-astro.ulb.ac.be/~ralvarez

    Activity of alumina supported fe catalysts for N2O decomposition: Effects of the iron content and thermal treatment

    Get PDF
    Indexación: Scopus.The activity of Fe2O3/Al2O3 catalysts prepared by impregnation of Al2O3 with different amounts of Fe and calcination temperatures (650 and 900 °C) in the direct N2O decomposition reaction was studied. High calcination temperature was introduced to study the effect of "aging", which are the conditions prevailing in the process-gas option for N2O abatement. The catalysts were characterized by BET, XRD, UV-DRS, and H2-TPR. The incorporation of Fe promotes the alumina phase transition (g-Al2O3 to a-Al2O3) when the catalysts are calcined at 900 °C, which is accompanied by a decrease in the specifc area. The activity of the catalysts and the specifc surface area depend on Fe loading and calcination temperature. It was found that highly dispersed Fe species are more active than bulk type Fe2O3 particles. We conclude that Fe2O3/Al2O3 catalysts prepared by impregnation method are active in the decomposition of N2O, to be used at low or high reaction temperatures (tail-gas or process-gas treatments, respectively), as part of nitric acid production plant. © 2018 Sociedad Chilena de Quimica. All rights reserved.https://scielo.conicyt.cl/pdf/jcchems/v62n4/0717-9324-jcchems-62-04-3752.pd

    Isospin mixing and Fermi transitions: Selfconsistent deformed mean field calculations and beyond

    Get PDF
    We study Fermi transitions and isospin mixing in an isotopic chain 70-78 Kr considering various approximations that use the same Skyrme-Hartree-Fock single particle basis. We study Coulomb effects as well as the effect of BCS and quasiparticle random phase approximation (QRPA) correlations. A measure of isospin mixing in the approximate ground state is defined by means of the expectation value of the isospin operator squared in N=Z nuclei (which is generalized to N different from Z nuclei). Starting from strict Hartree-Fock approach without Coulomb, it is shown that the isospin breaking is negligible, on the order of a few per thousand for (N-Z)=6, increasing to a few percent with Coulomb. Pairing correlations induce rather large isospin mixing and Fermi transitions of the forbidden type (beta- for NZ). The enhancement produced by BCS correlations is compensated to a large extent by QRPA correlations induced by isospin conserving residual interactions that tend to restore isospin symmetry.Comment: 14 pages, 5 figures, to be published in Phys. Rev.

    Gamow-Teller strength distributions in Fe and Ni stable isotopes

    Get PDF
    We study Gamow-Teller strength distributions in some selected nuclei of particular Astrophysical interest within the iron mass region. The theoretical framework is based on a proton-neutron Quasiparticle Random Phase Approximation built on a deformed selfconsistent mean field basis obtained from two-body density-dependent Skyrme forces. We compare our results to available experimental information obtained from (n,p) and (p,n) charge exchange reactions.Comment: 11 pages, 3 figure

    Decoherence as attenuation of mesoscopic echoes in a spin-chain channel

    Full text link
    An initial local excitation in a confined quantum system evolves exploring the whole system, returning to the initial position as a mesoscopic echo at the Heisenberg time. We consider a two weakly coupled spin chains, a spin ladder, where one is a quantum channel while the other represents an environment. We quantify decoherence in the quantum channel through the attenuation of the mesoscopic echoes. We evaluate decoherence rates for different ratios between sources of amplitude fluctuation and dephasing in the inter-chain interaction Hamiltonian. The many-body dynamics is seen as a one-body evolution with a decoherence rate given by the Fermi golden rule.Comment: 12 pages, 7 figure

    Quantum parallelism as a tool for ensemble spin dynamics calculations

    Full text link
    Efficient simulations of quantum evolutions of spin-1/2 systems are relevant for ensemble quantum computation as well as in typical NMR experiments. We propose an efficient method to calculate the dynamics of an observable provided that the initial excitation is "local". It resorts a single entangled pure initial state built as a superposition, with random phases, of the pure elements that compose the mixture. This ensures self-averaging of any observable, drastically reducing the calculation time. The procedure is tested for two representative systems: a spin star (cluster with random long range interactions) and a spin ladder.Comment: 5 pages, 3 figures, improved version of the manuscrip

    Symmetries shape the current in ratchets induced by a bi-harmonic force

    Get PDF
    Equations describing the evolution of particles, solitons, or localized structures, driven by a zero-average, periodic, external force, and invariant under time reversal and a half-period time shift, exhibit a ratchet current when the driving force breaks these symmetries. The bi-harmonic force f(t)=ϵ1cos(qωt+ϕ1)+ϵ2cos(pωt+ϕ2)f(t)=\epsilon_1\cos(q \omega t+\phi_1)+\epsilon_2\cos(p\omega t+\phi_2) does it for almost any choice of ϕ1\phi_{1} and ϕ2\phi_{2}, provided pp and qq are two co-prime integers such that p+qp+q is odd. It has been widely observed, in experiments in Josephson-junctions, photonic crystals, etc., as well as in simulations, that the ratchet current induced by this force has the shape vϵ1pϵ2qcos(pϕ1qϕ2+θ0)v\propto\epsilon_1^p\epsilon_2^q\cos(p \phi_{1} - q \phi_{2} + \theta_0) for small amplitudes, where θ0\theta_0 depends on the damping (θ0=π/2\theta_0=\pi/2 if there is no damping, and θ0=0\theta_0=0 for overdamped systems). We rigorously prove that this precise shape can be obtained solely from the broken symmetries of the system and is independent of the details of the equation describing the system.Comment: 4 page
    corecore