48 research outputs found

    Functional Characterization of the Plasmacytoma Variant Translocation 1 Gene (PVT1) in Diabetic Nephropathy

    Get PDF
    We previously observed association between variants in the plasmacytoma variant translocation 1 gene (PVT1) and end-stage renal disease (ESRD) attributed to both type 1 and type 2 diabetes, and demonstrated PVT1 expression in a variety of renal cell types. While these findings suggest a role for PVT1 in the development of ESRD, potential mechanisms for involvement remain unknown. The goal of this study was to identify possible molecular mechanisms by which PVT1 may contribute to the development and progression of diabetic kidney disease. We knocked-down PVT1 expression in mesangial cells using RNA interference, and analyzed RNA and protein levels of fibronectin 1 (FN1), collagen, type IV, alpha 1 (COL4A1), transforming growth factor beta 1 (TGFB1) and plasminogen activator inhibitor-1 (SERPINE1 or PAI-1) by qPCR and ELISA, respectively. PVT1 expression was significantly upregulated by glucose treatment in human mesangial cells, as were levels of FN1, COL4A1, TGFB1, and PAI-1. Importantly, PVT1 knockdown significantly reduced mRNA and protein levels of the major ECM proteins, FN1 and COL4A1, and two key regulators of ECM proteins, TGFB1 and PAI-1. However, we observed a higher and more rapid reduction in levels of secreted FN1, COL4A1, and PAI-1 compared with TGFB1, suggesting that at least some of the PVT1 effects on ECM proteins may be independent of this cytokine. These results indicate that PVT1 may mediate the development and progression of diabetic nephropathy through mechanisms involving ECM accumulation

    A transgenic transcription factor (TaDREB3) in barley affects the expression of microRNAs and other small non-coding RNAs

    Get PDF
    Transcription factors (TFs), microRNAs (miRNAs), small interfering RNAs (siRNAs) and other functional non-coding small RNAs (sRNAs) are important gene regulators. Comparison of sRNA expression profiles between transgenic barley overexpressing a drought tolerant TF (TaDREB3) and non-transgenic control barley revealed many group-specific sRNAs. In addition, 42% of the shared sRNAs were differentially expressed between the two groups (|log2|>1). Furthermore, TaDREB3- derived sRNAs were only detected in transgenic barley despite the existence of homologous genes in non-transgenic barley. These results demonstrate that the TF strongly affects the expression of sRNAs and siRNAs could in turn affect the TF stability. The TF also affects size distribution and abundance of sRNAs including miRNAs. About half of the sRNAs in each group were derived from chloroplast. A sRNA derived from tRNA-His(GUG) encoded by the chloroplast genome is the most abundant sRNA, accounting for 42.2% of the total sRNAs in transgenic barley and 28.9% in non-transgenic barley. This sRNA, which targets a gene (TC245676) involved in biological processes, was only present in barley leaves but not roots. 124 and 136 miRNAs were detected in transgenic and non-transgenic barley, respectively. miR156 was the most abundant miRNA and up-regulated in transgenic barley, while miR168 was the most abundant miRNA and up-regulated in non-transgenic barley. Eight out of 20 predicted novel miRNAs were differentially expressed between the two groups. All the predicted novel miRNA targets were validated using a degradome library. Our data provide an insight into the effect of TF on the expression of sRNAs in barley.Michael Hackenberg, Bu-Jun Shi, Perry Gustafson and Peter Langridg

    Insights into technical challenges in the field of microplastic pollution through the lens of early career researchers (ECRs) and a proposed pathway forward

    Get PDF
    Early career researchers (ECR) face a series of challenges related to the inherent difficulties of starting their careers. Microplastic (MP) research is a topical field attracting high numbers of ECRs with diverse backgrounds and expertise from a wealth of disciplines including environmental science, biology, chemistry and ecotoxicology. In this perspective the challenges that could hinder scientific, professional, or personal development are explored, as identified by an international network of ECRs, all employed in MP research, that was formed following a bilateral workshop for scientists based in the UK and China. Discussions amongst the network were grouped into four overarching themes of technical challenges: in the field, in the laboratory, in the post data collection phase, and miscellaneous. The three key areas of representativeness, access to appropriate resources, training, and clean labs, and the use of databases and comparability, as well as the overarching constraint of available time were identified as the source of the majority of challenges. A set of recommendations for pathways forward are proposed based on the principles of research openness, access to information and training, and widening collaborations. ECRs have great capacity to promote research excellence in the field of MPs and elsewhere, when provided with appropriate opportunities and suitable support

    Insights into technical challenges in the field of microplastic pollution through the lens of early career researchers (ECRs) and a proposed pathway forward

    Get PDF
    Early career researchers (ECR) face a series of challenges related to the inherent difficulties of starting their careers. Microplastic (MP) research is a topical field attracting high numbers of ECRs with diverse backgrounds and expertise from a wealth of disciplines including environmental science, biology, chemistry and ecotoxicology. In this perspective the challenges that could hinder scientific, professional, or personal development are explored, as identified by an international network of ECRs, all employed in MP research, that was formed following a bilateral workshop for scientists based in the UK and China. Discussions amongst the network were grouped into four overarching themes of technical challenges: in the field, in the laboratory, in the post data collection phase, and miscellaneous. The three key areas of representativeness, access t

    RNA mapping : methods and protocols / edited by M. Lucrecia Alvarez, Mahtab Nourbakhsh.

    No full text
    pharmacy bookfair2015Includes bibliographical references and index.xi, 375 pages

    Role of MicroRNA 1207-5P and Its Host Gene, the Long Non-Coding RNA <i>Pvt1</i>, as Mediators of Extracellular Matrix Accumulation in the Kidney: Implications for Diabetic Nephropathy

    No full text
    <div><p>Diabetic nephropathy is the most common cause of chronic kidney failure and end-stage renal disease in the Western World. One of the major characteristics of this disease is the excessive accumulation of extracellular matrix (ECM) in the kidney glomeruli. While both environmental and genetic determinants are recognized for their role in the development of diabetic nephropathy, epigenetic factors, such as DNA methylation, long non-coding RNAs, and microRNAs, have also recently been found to underlie some of the biological mechanisms, including ECM accumulation, leading to the disease. We previously found that a long non-coding RNA, the plasmacytoma variant translocation 1 (<i>PVT1</i>), increases plasminogen activator inhibitor 1 (PAI-1) and transforming growth factor beta 1 (TGF-β1) in mesangial cells, the two main contributors to ECM accumulation in the glomeruli under hyperglycemic conditions, as well as fibronectin 1 (FN1), a major ECM component. Here, we report that miR-1207-5p, a <i>PVT1</i>-derived microRNA, is abundantly expressed in kidney cells, and is upregulated by glucose and TGF-β1. We also found that like <i>PVT1</i>, miR-1207-5p increases expression of TGF-β1, PAI-1, and FN1 but in a manner that is independent of its host gene. In addition, regulation of miR-1207-5p expression by glucose and TGFβ1 is independent of <i>PVT1</i>. These results provide evidence supporting important roles for miR-1207-5p and its host gene in the complex pathogenesis of diabetic nephropathy.</p></div
    corecore