3,090 research outputs found

    Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector

    Get PDF
    The device physics of parallel-wire superconducting nanowire single photon detectors is based on a cascade process. Using nano-optical techniques and a parallel wire device with spatially-separate pixels we explicitly demonstrate the single- and multi-photon triggering regimes. We develop a model for describing efficiency of a detector operating in the arm-trigger regime. We investigate the timing response of the detector when illuminating a single pixel and two pixels. We see a change in the active area of the detector between the two regimes and find the two-pixel trigger regime to have a faster timing response than the one-pixel regime.Comment: 11 pages, 2 figure

    \u3csup\u3e1\u3c/sup\u3eH NMR Studies on the CuA Center of Nitrous Oxide Reductase from \u3cem\u3ePseudomonas stutzeri\u3c/em\u3e

    Get PDF
    1H NMR spectra of the CuA center of N2OR from Pseudomonas stutzeri, and a mutant enzyme that contains only CuA, were recorded in both H2O- and D2O-buffered solution at pH 7.5. Several sharp, well-resolved hyperfine-shifted 1H NMR signals were observed in the 60 to −10 ppm chemical shift range. Comparison of the native and mutant N2OR spectra recorded in H2O-buffered solutions indicated that several additional signals are present in the native protein spectrum. These signals are attributed to a dinuclear copper(II) center. At least two of the observed hyperfine-shifted signals associated with the dinuclear center, those at 23.0 and 13.2 ppm, are lost upon replacement of H2O buffer with D2O buffer. These data indicate that at least two histidine residues are ligands of a dinuclear Cu(II) center. Comparison of the mutant N2OR 1H NMR spectra recorded in H2O and D2O indicates that three signals, c (27.5 ppm), e (23.6 ppm), and i (12.4 ppm), are solvent exchangeable. The two most strongly downfield-shifted signals (c and e) are assigned to the two Nε2H (N-H) protons of the coordinated histidine residues, while the remaining exchangeable signal is assigned to a backbone N-H proton in close proximity to the CuA cluster. Signal e was found to decrease in intensity as the temperature was increased, indicating that proton e resides on a more solvent-exposed histidine residue. One-dimensional nOe studies at pH 7.5 allowed the histidine ring protons to be definitively assigned, while the remaining signals were assigned by comparison to previously reported spectra from CuA centers. The temperature dependence of the observed hyperfine-shifted 1H NMR signals of mutant N2OR were recorded over the temperature range of 276−315 K. Both Curie and anti-Curie temperature dependencies are observed for sets of hyperfine-shifted protons. Signals a and h (cysteine protons) follow anti-Curie behavior (contact shift increases with increasing temperatures), while signals b−g, i, and j (histidine protons) follow Curie behavior (contact shift decreases with increasing temperatures). Fits of the temperature dependence of the observed hyperfine-shifted signals provided the energy separation (ΔEL) between the ground (2B3u) and excited (2B2u) states. The temperature data obtained for all of the observed hyperfine-shifted histidine ligand protons provided a ΔEL value of 62 ± 35 cm-1. The temperature dependence of the observed cysteine CβH and CαH protons (a and h) were fit in a separate experiment providing a ΔEL value of 585 ± 125 cm-1. The differences between the ΔEL values determined by 1H NMR spectroscopy and those determined by EPR or MCD likely arise from coupling between relatively low-frequency vibrational states and the ground and excited electronic states

    Observation of the Askaryan Effect: Coherent Microwave Cherenkov Emission from Charge Asymmetry in High Energy Particle Cascades

    Get PDF
    We present the first direct experimental evidence for the charge excess in high energy particle showers predicted nearly 40 years ago by Askaryan. We directed bremsstrahlung photons from picosecond pulses of 28.5 GeV electrons at the SLAC Final Focus Test Beam facility into a 3.5 ton silica sand target, producing electromagnetic showers several meters long. A series of antennas spanning 0.3 to 6 GHz were used to detect strong, sub-nanosecond radio frequency pulses produced whenever a shower was present. The measured electric field strengths are consistent with a completely coherent radiation process. The pulses show 100% linear polarization, consistent with the expectations of Cherenkov radiation. The field strength versus depth closely follows the expected particle number density profile of the cascade, consistent with emission from excess charge distributed along the shower. These measurements therefore provide strong support for experiments designed to detect high energy cosmic rays and neutrinos via coherent radio emission from their cascades.Comment: 10 pages, 4 figures. Submitted to Phys. Rev. Let

    Radio-Frequency Measurements of Coherent Transition and Cherenkov Radiation: Implications for High-Energy Neutrino Detection

    Full text link
    We report on measurements of 11-18 cm wavelength radio emission from interactions of 15.2 MeV pulsed electron bunches at the Argonne Wakefield Accelerator. The electrons were observed both in a configuration where they produced primarily transition radiation from an aluminum foil, and in a configuration designed for the electrons to produce Cherenkov radiation in a silica sand target. Our aim was to emulate the large electron excess expected to develop during an electromagnetic cascade initiated by an ultra high-energy particle. Such charge asymmetries are predicted to produce strong coherent radio pulses, which are the basis for several experiments to detect high-energy neutrinos from the showers they induce in Antarctic ice and in the lunar regolith. We detected coherent emission which we attribute both to transition and possibly Cherenkov radiation at different levels depending on the experimental conditions. We discuss implications for experiments relying on radio emission for detection of electromagnetic cascades produced by ultra high-energy neutrinos.Comment: updated figure 10; fixed typo in equation 2.2; accepted by PR

    A broad spectrum, one-step reverse-transcription PCR amplification of the neuraminidase gene from multiple subtypes of influenza A virus

    Get PDF
    Background: The emergence of high pathogenicity strains of Influenza A virus in a variety of human and animal hosts, with wide geographic distribution, has highlighted the importance of rapid identification and subtyping of the virus for outbreak management and treatment. Type A virus can be classified into subtypes according to the viral envelope glycoproteins, hemagglutinin and neuraminidase. Here we review the existing specificity and amplification of published primers to subtype neuraminidase genes and describe a new broad spectrum primer pair that can detect all 9 neuraminidase subtypes

    American political affiliation, 2003–43: a cohort component projection

    Get PDF
    The recent rise and stability in American party identification has focused interest on the long-term dynamics of party bases. Liberal commentators cite immigration and youth as forces which will produce a natural Democratic advantage in the future while conservative writers highlight the importance of high Republican fertility in securing Republican growth. These concerns foreground the neglect of demography within political science. This paper addresses this omission by conducting the first ever cohort component projection of American partisan populations to 2043 based on survey and census data. A number of scenarios are modeled, but, on current trends, we predict that American partisanship will shift much less than the nation’s ethnic composition because the parties’ age structures are similar. Still, our projections find that the Democrats gain two to three percentage points from the Republicans by 2043, mainly through immigration, though Republican fertility may redress the balance in the very long term

    Interdigitated ring electrodes: Theory and experiment

    Full text link
    The oxidation of potassium ferrocyanide, K_4Fe(CN)_6, in aqueous solution under fully supported conditions is carried out at interdigitated band and ring electrode arrays, and compared to theoretical models developed to simulate the processes. Simulated data is found to fit well with experimental results using literature values of diffusion coefficients for Fe(CN)_6^(4-) and Fe(CN)_6^(3-). The theoretical models are used to compare responses from interdigitated band and ring arrays, and the size of ring array required to approximate the response to a linear band array is investigated. An equation is developed for the radius of ring required for a pair of electrodes in a ring array to give a result with 5% of a pair of electrodes in a band array. This equation is found to be independent of the scan rate used over six orders of magnitude

    The Most Metal-Poor Stars. II. Chemical Abundances of 190 Metal-Poor Stars Including 10 New Stars With [Fe/H] < -3.5

    Get PDF
    We present a homogeneous chemical abundance analysis of 16 elements in 190 metal-poor Galactic halo stars (38 program and 152 literature objects). The sample includes 171 stars with [Fe/H] < -2.5, of which 86 are extremely metal poor, [Fe/H] < -3.0. Our program stars include ten new objects with [Fe/H] < -3.5. We identify a sample of "normal" metal-poor stars and measure the trends between [X/Fe] and [Fe/H], as well as the dispersion about the mean trend for this sample. Using this mean trend, we identify objects that are chemically peculiar relative to "normal" stars at the same metallicity. These chemically unusual stars include CEMP-no objects, one star with high [Si/Fe], another with high [Ba/Sr], and one with unusually low [X/Fe] for all elements heavier than Na. The Sr and Ba abundances indicate that there may be two nucleosynthetic processes at lowest metallicity that are distinct from the main r-process. Finally, for many elements, we find a significant trend between [X/Fe] versus Teff which likely reflects non-LTE and/or 3D effects. Such trends demonstrate that care must be exercised when using abundance measurements in metal-poor stars to constrain chemical evolution and/or nucleosynthesis predictions.Comment: Accepted for publication in Ap
    • …
    corecore