45 research outputs found

    Diffusion is capable of translating anisotropic apoptosis initiation into a homogeneous execution of cell death

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apoptosis is an essential cell death process throughout the entire life span of all metazoans and its deregulation in humans has been implicated in many proliferative and degenerative diseases. Mitochondrial outer membrane permeabilisation (MOMP) and activation of effector caspases are key processes during apoptosis signalling. MOMP can be subject to spatial coordination in human cancer cells, resulting in intracellular waves of cytochrome-c release. To investigate the consequences of these spatial anisotropies in mitochondrial permeabilisation on subsequent effector caspase activation, we devised a mathematical reaction-diffusion model building on a set of partial differential equations.</p> <p>Results</p> <p>Reaction-diffusion modelling suggested that even if strong spatial anisotropies existed during mitochondrial cytochrome c release, these would be eliminated by free diffusion of the cytosolic proteins that instantiate the apoptosis execution network. Experimentally, rapid sampling of mitochondrial permeabilisation and effector caspase activity in individual HeLa cervical cancer cells confirmed predictions of the reaction-diffusion model and demonstrated that the signalling network of apoptosis execution could efficiently translate spatial anisotropies in mitochondrial permeabilisation into a homogeneous effector caspase response throughout the cytosol. Further systems modelling suggested that a more than 10,000-fold impaired diffusivity would be required to maintain spatial anisotropies as observed during mitochondrial permeabilisation until the time effector caspases become activated.</p> <p>Conclusions</p> <p>Multi-protein diffusion efficiently contributes to eliminating spatial asynchronies which are present during the initiation of apoptosis execution and thereby ensures homogeneous apoptosis execution throughout the entire cell body. For previously reported biological scenarios in which effector caspase activity was shown to be targeted selectively to specific subcellular regions additional mechanisms must exist that limit or spatially coordinate caspase activation and/or protect diffusing soluble caspase substrates from unwanted proteolysis.</p

    Structure, function, and evolution of plant NIMA-related kinases: implication for phosphorylation-dependent microtubule regulation

    Full text link

    A potential anti-tumor effect of leukotriene C4 through the induction of 15-hydroxyprostaglandin dehydrogenase expression in colon cancer cells

    No full text
    Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Cyclooxygenase-2, which plays a key role in the biosynthesis of prostaglandin E2 (PGE2), is often up-regulated in CRC and in other types of cancer. PGE2 induces angiogenesis and tumor cell survival, proliferation and migration. The tumor suppressor 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is a key enzyme in PGE2 catabolism, converting it into its inactive metabolite 15-keto- PGE2, and is often down-regulated in cancer. Interestingly, CRC patients expressing high levels of the cysteinyl leukotriene 2 (CysLT2) receptor have a good prognosis; therefore, we investigated a potential link between CysLT2 signaling and the tumor suppressor 15-PGDH in colon cancer cells. We observed a significant up-regulation of 15-PGDH after treatment with LTC4, a CysLT2 ligand, in colon cancer cells at both the mRNA and protein levels, which could be reduced by a CysLT2 antagonist or a JNK inhibitor. LTC4 induced 15-PGDH promoter activity via JNK/AP-1 phosphorylation. Furthermore, we also observed that LTC4, via the CysLT2/JNK signaling pathway, increased the expression of the differentiation markers sucrase-isomaltase and mucin-2 in colon cancer cells and that down-regulation of 15-PGDH totally abolished the observed increase in these markers. In conclusion, the restoration of 15-PGDH expression through CysLT2 signaling promotes the differentiation of colon cancer cells, indicating an anti-tumor effect of CysLT2 signaling

    Nuclear localization of γ-tubulin affects E2F transcriptional activity and S-phase progression

    No full text
    We show that the centrosome- and microtubule-regulating protein γ-tubulin interacts with E2 promoter binding factors (E2Fs) to modulate E2F transcriptional activity and thereby control cell cycle progression. γ-Tubulin contains a C-terminal signal that results in its translocation to the nucleus during late G1 to early S phase. γ-Tubulin mutants showed that the C terminus interacts with the transcription factor E2F1 and that the E2F1–γ-tubulin complex is formed during the G1/S transition, when E2F1 is transcriptionally active. Furthermore, E2F transcriptional activity is altered by reduced expression of γ-tubulin or by complex formation between γ-tubulin and E2F1, E2F2, or E2F3, but not E2F6. In addition, the γ-tubulin C terminus encodes a DNA-binding domain that interacts with E2F-regulated promoters, resulting in γ-tubulin-mediated transient activation of E2Fs. Thus, we report a novel mechanism regulating the activity of E2Fs, which can help explain how these proteins affect cell cycle progression in mammalian cells.—Höög, G., Zarrizi, R., von Stedingk, K., Jonsson, K., Alvarado-Kristensson, M. Nuclear localization of γ-tubulin affects E2F transcriptional activity and S-phase progression
    corecore