3 research outputs found
First report of caprine abortions due to Chlamydia abortus in Argentina.
Infectious abortions of goats in Argentina are mainly associated with brucellosis and toxoplasmosis. In this paper, we describe an abortion outbreak in goats caused by Chlamydia abortus. Seventy out of 400 goats aborted. Placental smears stained with modified Ziehl-Neelsen stain showed many chlamydia-like bodies within trophoblasts. One stillborn fetus was necropsied and the placenta was examined. No gross lesions were seen in the fetus, but the inter-cotyledonary areas of the placenta were thickened and covered by fibrino-suppurative exudate. The most consistent microscopic finding was found in the placenta and consisted of fibrinoid necrotic vasculitis, with mixed inflammatory infiltration in the tunica media. Immunohistochemistry of the placenta was positive for Chlamydia spp. The results of polymerase chain reaction targeting 23S rRNA gene performed on placenta were positive for Chlamydia spp. An analysis of 417 amplified nucleotide sequences revealed 99% identity to those of C. abortus pm225 (GenBank AJ005617) and pm112 (GenBank AJ005613) isolates. To the best of our knowledge, this is the first report of abortion associated with C. abortus in Argentina
Molecular typing of Argentinian Mycobacterium avium subsp. paratuberculosis isolates by multiple-locus variable number-tandem repeat analysis
Multiple-locus variable number-tandem repeat analysis (MLVA) of Mycobacterium avium subspecies paratuberculosis (MAP) isolates may contribute to the knowledge of strain diversity in Argentina. Although the diversity of MAP has been previously investigated in Argentina using IS900-RFLP, a small number of isolates were employed, and a low discriminative power was reached. The aim of the present study was to test the genetic diversity among MAP isolates using an MLVA approach based on 8 repetitive loci. We studied 97 isolates from cattle, goat and sheep and could describe 7 different patterns: INMV1, INMV2, INMV11, INMV13, INMV16, INMV33 and one incomplete pattern. INMV1 and INMV2 were the most frequent patterns, grouping 76.3% of the isolates. We were also able to demonstrate the coexistence of genotypes in herds and co-infection at the organism level. This study shows that all the patterns described are common to those described in Europe, suggesting an epidemiological link between the continents
Association of bovine viral diarrhea virus, bovine herpesvirus 1, and Neospora caninum with late embryonic losses in highly supplemented grazing dairy cows
The objectives of this study were: 1- to evaluate the association of Bovine Viral Diarrhea Virus (BVDV), Bovine Herpes Virus 1 (BoHV-1), and Neospora caninum (N. caninum) with the risk for Late Embryonic Loss (LEL) in grazing dairy cows, 2- to evaluate blood progesterone concentration at the time of LEL occurrence, and 3- to describe a novel ultrasound-guided technique for conceptus sampling. We run a prospective cohort study involving 92 cows (46 LEL and 46 NLEL). An LEL cow was that having an embryo with no heartbeat, detached membranes, or floating structures, including embryo remnants detected at pregnancy check by ultrasonography (US) 28-42 days post-AI, whereas an NLEL cow was that with embryo heartbeats detectable by US at pregnancy check 28-42 d post-IA. We took two blood samples from every cow at pregnancy check by US (the day of LEL detection) and 28 d later to perform serological diagnosis of BVDV, BoHV-1, and N. caninum; and to measure blood progesterone concentration at pregnancy check (28-42 d post-AI). We also sampled the conceptus from all the LEL cows. We performed PCR to detect BVDV, BoHV-1, and N. caninum in sampled conceptuses from LEL cows. Finally, we evaluated the associations of risk factors (serological titers, seroconversion, and progesterone) with LEL odds with logistic models. The risk for LEL was associated with serological titers to BVDV (P = 0.03) and tended to be associated with seroconversion to BVDV, given that 19.6% (9/46) in LEL and 6.5% (3/46) in NLEL cows seroconverted to BVDV (P = 0.09). In addition, BVDV was detected in conceptuses from LEL cows that seroconverted to BVDV but not in LEL cows that did not seroconvert. Conversely, the risk for LEL was not associated with the titers or seroconversion to BoHV-1 and N. caninum. BoHV-1 and N. caninum were not identified in any of the conceptuses. Finally, blood progesterone concentration was similar in LEL and NLEL cows, and it was not associated with the risk for LEL (P = 0.54). In conclusion, BVDV infection is a risk factor for LEL in dairy cows