21 research outputs found

    On Laminar to Turbulent Transition of Arc-Jet Flow in the NASA Ames Panel Test Facility

    Get PDF
    This paper provides experimental evidence and supporting computational analysis to characterize the laminar to turbulent flow transition in a high enthalpy arc-jet facility at NASA Ames Research Center. The arc-jet test data obtained in the 20 MW Panel Test Facility include measurements of surface pressure and heat flux on a water-cooled calibration plate, and measurements of surface temperature on a reaction-cured glass coated tile plate. Computational fluid dynamics simulations are performed to characterize the arc-jet test environment and estimate its parameters consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles. Both laminar and turbulent simulations are performed, and the computed results are compared with the experimental measurements, including Stanton number dependence on Reynolds number. Comparisons of computed and measured surface heat fluxes (and temperatures), along with the accompanying analysis, confirm that that the boundary layer in the Panel Test Facility flow is transitional at certain archeater conditions

    CFD Simulations of the IHF Arc-Jet Flow: 9-Inch Nozzle, Flow Surveys, LEAF Wedge Calibration Data

    Get PDF
    This paper reports computational analyses and flow characterization studies in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using a wedge model placed in a free jet downstream of new 9-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. Both the nozzle and wedge model were specifically designed for testing in the new Laser-Enhanced Arc-jet Facility. Data were obtained using stagnation calorimeters and wedge models placed downstream of the nozzle exit. Two instrumented wedge calibration plates were used: one water-cooled and the other RCG-coated tile plate. Experimental surveys of arc-jet test flow with pitot and heat flux probes were also performed at three arc-heater conditions, providing assessment of the flow uniformity and valuable data for the flow characterization. The present analysis comprises computational fluid dynamics simulations of the nonequilibrium flowfield in the facility nozzle and test box, including the models tested, and comparisons with the experimental measurements. By taking into account nonuniform total enthalpy and mass flux profiles at the nozzle inlet as well as the expansion waves emanating from the nozzle exit and their effects on the model flowfields, these simulations approximately reproduce the probe survey data and predict the wedge model surface pressure and heat flux measurements

    Assessment of Fencing on the Orion Heatshield

    Get PDF
    This paper presents recent experimental results from arc-jet tests of the Orion heatshield that were conducted at NASA Ames Research Center. Test conditions that simulated a set of heating profiles in time representative of the Orion flight environments were used to observe their effect on Orion's block architecture in terms of differential recession or fencing. Surface recession of arc-jet models was characterized during and after testing to derive fencing profiles used for the baseline sizing of the heatshield. Arc-jet test data show that the block architecture produces varying degrees of fencing

    Laser-Enhanced Arc-Jet Facility Wedge Tests: Avcoat Material Performance Under Convective and Radiative Heating Environments

    Get PDF
    This paper presents the first set of experimental results from Laser Enhanced Arc-Jet Facility (LEAF-Lite) tests that were conducted shortly after the radiative LEAF-Lite system was added to the 60-MW Interaction Heating Facility at NASA Ames Research Center. Results were gathered to characterize the new radiative and combined heating capabilities as well as the convective heating resulting from the new IHF nozzle that was required for combined heating operations. Tests were ultimately conducted at several combinations of radiative and convective heating prompted by the need to understand the effect of combined heating on the Orion heatshield material prior to pursuing combined heating tests of the more complex block architecture

    Computational Simulations of the 10-MW TP3 Arc-Jet Facility Flow

    Get PDF
    This paper reports computational simulations and analysis in support of calibration tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using stagnation calorimeters and two different blunted wedge models with calibration plates at a wide range of conditions in the NASA Ames 10-megawatt TP3 (Test Position 3) facility. Data were obtained using four different conical nozzles with the same test configuration in which the models were placed in a free jet downstream of the nozzle. Experimental surveys of arc-jet test flow with pitot and null-point heat flux probes were also performed at several arc-heater conditions, providing assessment of the flow uniformity and valuable data for the flow characterization. The present analysis comprises computational fluid dynamics simulations of the nonequilibrium flowfield in the facility nozzle and test box, including the models tested, and comparisons with the experimental measurements. These computational simulations provide estimates of the arc-jet test environment parameters that are not measured but are needed to evaluate the performance of thermal protection system materials, along with further valuable insights into the arc-jet testing environment. Simulation results are used to estimate centerline total enthalpy, surface shear, boundary layer thickness, and boundary layer edge Mach number and to verify that specific test requirements from the Orion program are met

    Flow Characterization Studies of the 10-MW TP3 Arc-Jet Facility: Probe Sweeps

    Get PDF
    This paper reports computational simulations and analysis in support of calibration and flow characterization tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted in the NASA Ames 10-MW TP3 facility using flat-faced stagnation calorimeters at six conditions corresponding to the steps of a simulated flight heating profile. Data were obtained using a conical nozzle test configuration in which the models were placed in a free jet downstream of the nozzle. Experimental surveys of arc-jet test flow with pitot pressure and heat flux probes were also performed at these arc-heater conditions, providing assessment of the flow uniformity and valuable data for the flow characterization. Two different sets of pitot pressure and heat probes were used: 9.1-mm sphere-cone probes (nose radius of 4.57 mm or 0.18 in) with null-point heat flux gages, and 15.9-mm (0.625 in) diameter hemisphere probes with Gardon gages. The probe survey data clearly show that the test flow in the TP3 facility is not uniform at most conditions (not even axisymmetric at some conditions), and the extent of non-uniformity is highly dependent on various arc-jet parameters such as arc current, mass flow rate, and the amount of cold-gas injection at the arc-heater plenum. The present analysis comprises computational fluid dynamics simulations of the nonequilibrium flowfield in the facility nozzle and test box, including the models tested. Comparisons of computations with the experimental measurements show reasonably good agreement except at the extreme low pressure conditions of the facility envelope

    Flow Characterization Studies of the 10-MW TP3 Arc-Jet Facility: Probe Sweeps

    Get PDF
    This paper reports computational simulations and analysis in support of calibration and flow characterization tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted in the NASA Ames 10-MW TP3 facility using flat-faced stagnation calorimeters at six conditions corresponding to the steps of a simulated flight heating profile. Data were obtained using a conical nozzle test configuration in which the models were placed in a free jet downstream of the nozzle. Experimental surveys of arc-jet test flow with pitot pressure and heat flux probes were also performed at these arc-heater conditions, providing assessment of the flow uniformity and valuable data for the flow characterization. Two different sets of pitot pressure and heat probes were used: 9.1-mm sphere-cone probes (nose radius of 4.57 mm or 0.18 in) with null-point heat flux gages, and 15.9-mm (0.625 in) diameter hemisphere probes with Gardon gages. The probe survey data clearly show that the test flow in the TP3 facility is not uniform at most conditions (not even axisymmetric at some conditions), and the extent of non-uniformity is highly dependent on various arc-jet parameters such as arc current, mass flow rate, and the amount of cold-gas injection at the arc-heater plenum. The present analysis comprises computational fluid dynamics simulations of the nonequilibrium flowfield in the facility nozzle and test box, including the models tested. Comparisons of computations with the experimental measurements show reasonably good agreement except at the extreme low pressure conditions of the facility envelope

    Quaoar: New, Longitudinaly Resolved, Spectroscopic Characterization of Its Surface

    Get PDF
    (50000) Quaoar, one of the largest Trans-neptunian objects, is comparable in size to Pluto's moon Charon. However, while Charon's surface is rich almost exclusively in H2O ice, Quaoar's surface characterized by ices of CH4, N2, as well as C2H6, a product of irradiation of CH4 (Dalle Ore et al. 2009). Because of its distance from the Sun, Quaoar is expected to have preserved, to a degree, its original composition, however, its relatively small size did not make it a prime candidate for presence of volatile ices in the study by Schaller and Brown (2007). Furthermore, based on the Brown et al. (2011) study (Brown, Schaller, & Fraser, 2011. A Hypothesis for the Color Diversity of the Kuiper Belt. ApJL, 739, L60) its red coloration points to CH3OH as the ice which, when irradiated, might have produced the red material. We present new visible to near-infrared (0.3-2.48 micrometers) spectro-photometric data obtained with the XSHOOTER (Vernet et al. 2011, A&A, 536A, 105 ) instrument at the VLT-ESO facility at four different longitudes on the surface of Quaoar. The data are complemented by previously published photometric observations obtained in the near-infrared (3.6, 4.5 micrometers) with the Spitzer Space Telescope, which provide an extra set of constraints in the model calculation process in spite of the different observing times that preclude establishing the spatial consistency between the two sets. For each of the four spectra we perform spectral modeling of the entire wavelength range -from 0.3 to 4.5 micrometers- by means of a code based on the Shkuratov radiative transfer formulation of the slab model. We obtain spatially resolved compositional information for the surface of Quaoar supporting the presence of CH4 and C2H6, as previously reported, along with evidence for N2 and NH3OH. The albedo at the two Spitzer bands indicates the likely presence of CO and CO2. CH3OH, predicted on the basis of Quaoar's coloration (Brown et al. 2011), is not found at any of the four longitudes, implying that the presence of this ice is a sufficient, but not necessary condition for reddening of TNO surfaces. Other ices, in particular CH4 (Brunetto et al. 2006), have been shown to be plausible precursors for reddening of TNO surfaces

    Testing with the Laser-Enhanced Arc Jet Facility (LEAF) at NASA Ames Research Center

    Get PDF
    NASA's new Laser-Enhanced Arcjet Facility (LEAF) employs 200 kilowatts of continuous-wave fiber lasers, combined with a 60-megawatt arc plasma jet, to simulate the combined radiative and convective heating is now operational and Orion heat-shield material is undergoing testing. This upgrade to the existing Interaction Heating Facility (IHF) involves the addition of high-power fiber lasers that project 1070nm radiative energy into the existing vacuum chamber. The optically expanded laser beam enters a side window of the test chamber to form either a uniform 150 x 150 mm or a 425 x 425 mm square spot on a wedge-shaped model holder. Combined heating levels of up to 180 W/cm2 convective with either 300 W/cm2 or 100 W/cm2 are achievable. This allows the arc jet and lasers to simulate dynamic entry-heating profiles encountered during entry by the Orion crew capsule for the lunar return conditions. New computational investigations are underway to explore testing with the objective of defining ablative material failure limit. Typical arc-jet testing is performed with test article that are stagnation or wedge geometries. The existing convective heating test facility combined with test article design limits how high a combined shear, heat-flux and pressure conditions can be achieved. With the addition of laser power of 200 kW, much higher combined conditions of high heat-flux, pressure and shear is achievable on a wedge or a swept-cylinder article. Such testing possibilities will allow us to progressively increase the combined conditions and explore when an ablative TPS material may fail. The presentation provides an overview of the LEAF and present results from the on-going Orion Testing

    Pterodactyl: Trade Study for an Integrated Control System Design of a Mechanically Deployable Entry Vehicle

    Get PDF
    This paper presents the trade study method used to evaluate and downselect from a set of guidance and control (G&C) system designs for a mechanically Deployable Entry Vehicle (DEV). The Pterodactyl project was prompted by the challenge to develop an effective G&C system for a vehicle without a backshell, which is the case for DEVs. For the DEV, the project assumed a specific aeroshell geometry pertaining to an Adaptable, Deployable Entry and Placement Technology (ADEPT) vehicle, which was successfully developed by NASAs Space Technology Mission Directorate (STMD) prior to this study. The Pterodactyl project designed three different entry G&C systems for precision targeting. This paper details the Figures of Merit (FOMs) and metrics used during the course of the projects G&C system assessment. The relative importance of the FOMs was determined from the Analytic Hierarchy Process (AHP), which was used to develop weights that were combined with quantitative design metrics and engineering judgement to rank the G&C systems against one another. This systematic method takes into consideration the projects input while simultaneously reducing unintentional judgement bias and ultimately was used to select a single G&C design for the project to pursue in the next design phase
    corecore