234 research outputs found

    Interaction-Driven Equilibrium and Statistical Laws in Small Systems. The Cerium Atom

    Full text link
    It is shown that statistical mechanics is applicable to isolated quantum systems with finite numbers of particles, such as complex atoms, atomic clusters, or quantum dots in solids, where the residual two-body interaction is sufficiently strong. This interaction mixes the unperturbed shell-model (Hartree-Fock) basis states and produces chaotic many-body eigenstates. As a result, an interaction-induced statistical equilibrium emerges in the system. This equilibrium is due to the off-diagonal matrix elements of the Hamiltonian. We show that it can be described by means of temperature introduced through the canonical-type distribution. However, the interaction between the particles can lead to prominent deviations of the equilibrium distribution of the occupation numbers from the Fermi-Dirac shape. Besides that, the off-diagonal part of the Hamiltonian gives rise to the increase of the effective temperature of the system (statistical effect of the interaction). For example, this takes place in the cerium atom which has four valence electrons and which is used in our work to compare the theory with realistic numerical calculations.Comment: 25 pages, RevTeX, 5 figures in ps-format. Submitted to Phys. Rev.

    The geochemical cycling of reactive chlorine through the marine troposphere

    Get PDF
    Heterogeneous reactions involving sea‐salt aerosol in the marine troposphere are the major global source for volatile inorganic chlorine. We measured reactant and product species hypothesized to be associated with these chemical transformations as a function of phase, particle size, and altitude over the North Atlantic Ocean during the summer of 1988. Concentrations of HCl were typically less than 1.0 ppbv near the sea surface and decreased with altitude and with distance from the U.S. east coast. Concentrations of Cl volatilized from aerosols were generally equivalent to the corresponding concentrations of HCl and ranged from less than detection limits to 125 nmol m−3 STP. Highest absolute and percentage losses of particulate Cl were typically associated with elevated concentrations of anthropogenic combustion products. Concentrations of product nss SO42− and N03− in coarse aerosol fractions indicate that on average only 38% of measured Cl− deficits could be accounted for by the combined effects of acid‐base desorption and reactions involving nonacidic N gases. We hypothesize a mechanism for the Cl loss initiated by reaction of O3 at sea‐salt aerosol surfaces, generating Cl2 followed by rapid photochemical conversion of Cl2 to HCl via Cl atoms (Cl˙) and eventual recapture of HCl by the aerosol. Simulations with a zero‐dimension (0‐D) photochemical model suggest that oxidation by Cl˙ may be an important tropospheric sink for dimethyl sulfide and hydrocarbons. Under low‐NOx conditions, the rapid cycling of reactive Cl would provide a catalytic loss mechanism for O3, which would possibly explain the low O3 concentrations often observed above the world\u27s oceans
    corecore