3,392 research outputs found

    Density Functional Theory for the Photoionization Dynamics of Uracil

    Full text link
    Photoionization dynamics of the RNA base Uracil is studied in the framework of Density Functional Theory (DFT). The photoionization calculations take advantage of a newly developed parallel version of a multicentric approach to the calculation of the electronic continuum spectrum which uses a set of B-spline radial basis functions and a Kohn-Sham density functional hamiltonian. Both valence and core ionizations are considered. Scattering resonances in selected single-particle ionization channels are classified by the symmetry of the resonant state and the peak energy position in the photoelectron kinetic energy scale; the present results highlight once more the site specificity of core ionization processes. We further suggest that the resonant structures previously characterized in low-energy electron collision experiments are partly shifted below threshold by the photoionization processes. A critical evaluation of the theoretical results providing a guide for future experimental work on similar biosystems

    Which solar neutrino data favour the LMA solution?

    Full text link
    Assuming neutrino oscillations, global analyses of solar data find that the LOW solution is significantly disfavoured, leaving LMA as the best solution. But the preference for LMA rests on three weak hints: the spectrum of earth matter effects (Super-Kamiokande sees an overall day/night asymmetry only at 1 sigma), the Cl rate (but LMA and LOW predictions are both above the measured value), the Ga rate (newer data decrease towards the LOW predictions both in GNO and SAGE). Only new data will tell us if LMA is the true solution.Comment: 4 pages, 2 figure

    Polyhedral Cosmic Strings

    Full text link
    Quantum field theory is discussed in M\"obius corner kaleidoscopes using the method of images. The vacuum average of the stress-energy tensor of a free field is derived and is shown to be a simple sum of straight cosmic string expressions, the strings running along the edges of the corners. It does not seem possible to set up a spin-half theory easily.Comment: 15 pages, 4 text figures not include

    Localized Wavefunctions and Magnetic Band Structure for Lateral Semiconductor Superlattices

    Full text link
    In this paper we present calculations on the electronic band structure of a two-dimensional lateral superlattice subject to a perpendicular magnetic field by employing a projection operator technique based on the ray-group of magnetotranslation operators. We construct a new basis of appropriately symmetrized Bloch-like wavefunctions as linear combination of well-localized magnetic-Wannier functions. The magnetic field was consistently included in the Wannier functions defined in terms of free-electron eigenfunctions in the presence of external magnetic field in the symmetric gauge. Using the above basis, we calculate the magnetic energy spectrum of electrons in a lateral superlattice with bi-directional weak electrostatic modulation. Both a square lattice and a triangular one are considered as special cases. Our approach based on group theory handles the cases of integer and rational magnetic fluxes in a uniform way and the provided basis could be convenient for further both analytic and numerical calculations.Comment: 19 pages, 5 figures. accepted to Int. J. Mod. Phys. B (April 2006

    Reduced field-of-view diffusion-weighted imaging of the lumbosacral enlargement: a pilot in vivo study of the healthy spinal cord at 3T

    Get PDF
    Diffusion tensor imaging (DTI) has recently started to be adopted into clinical investigations of spinal cord (SC) diseases. However, DTI applications to the lower SC are limited due to a number of technical challenges, related mainly to the even smaller size of the SC structure at this level, its position relative to the receiver coil elements and the effects of motion during data acquisition. Developing methods to overcome these problems would offer new means to gain further insights into microstructural changes of neurological conditions involving the lower SC, and in turn could help explain symptoms such as bladder and sexual dysfunction. In this work, the feasibility of obtaining grey and white matter (GM/WM) DTI indices such as axial/radial/mean diffusivity (AD/RD/MD) and fractional anisotropy (FA) within the lumbosacral enlargement (LSE) was investigated using a reduced field-of-view (rFOV) single-shot echo-planar imaging (ss-EPI) acquisition in 14 healthy participants using a clinical 3T MR system. The scan-rescan reproducibility of the measurements was assessed by calculating the percentage coefficient of variation (%COV). Mean FA was higher in WM compared to GM (0.58 and 0.4 in WM and GM respectively), AD and MD were higher in WM compared to GM (1.66 µm2ms-1 and 0.94 µm2ms-1 in WM and 1.2 µm2ms-1 and 0.82 µm2ms-1 in GM for AD and MD respectively) and RD was lower in WM compared to GM (0.58 µm2ms-1 and 0.63 µm2ms-1 respectively). The scan-rescan %COV was lower than 10% in all cases with the highest values observed for FA and the lowest for MD. This pilot study demonstrates that it is possible to obtain reliable tissue-specific estimation of DTI indices within the LSE using a rFOV ss-EPI acquisition. The DTI acquisition and analysis protocol presented here is clinically feasible and may be used in future investigations of neurological conditions implicating the lower SC

    SO(3) Gauge Symmetry and Nearly Tri-bimaximal Neutrino Mixing

    Full text link
    In this note I mainly focus on the neutrino physics part in my talk and report the most recent progress made in \cite{YLW0}. It is seen that the Majorana features of neutrinos and SO(3) gauge flavor symmetry can simultaneously explain the smallness of neutrino masses and nearly tri-bimaximal neutrino mixing when combining together with the mechanism of approximate global U(1) family symmetry. The mixing angle θ13\theta_{13} and CP-violating phase are in general nonzero and testable experimentally at the allowed sensitivity. The model also predicts the existence of vector-like Majorana neutrinos and charged leptons as well as new Higgs bosons, some of them can be light and explored at the LHC and ILC.Comment: 8 pages, invited talk, contribute to the Proceedings of the 4th International Conference on Flavor Physics (ICFP2007

    Testing the robustness of laws of polysemy and brevity versus frequency

    Get PDF
    The pioneering research of G.K. Zipf on the relationship between word frequency and other word features led to the formulation of various linguistic laws. Here we focus on a couple of them: the meaning-frequency law, i.e. the tendency of more frequent words to be more polysemous, and the law of abbreviation, i.e. the tendency of more frequent words to be shorter. Here we evaluate the robustness of these laws in contexts where they have not been explored yet to our knowledge. The recovery of the laws again in new conditions provides support for the hypothesis that they originate from abstract mechanisms.Peer ReviewedPostprint (author's final draft

    Complete results for five years of GNO solar neutrino observations

    Get PDF
    We report the complete GNO solar neutrino results for the measuring periods GNO III, GNO II, and GNO I. The result for GNO III (last 15 solar runs) is [54.3 + 9.9 - 9.3 (stat.)+- 2.3 (syst.)] SNU (1 sigma) or [54.3 + 10.2 - 9.6 (incl. syst.)] SNU (1 sigma) with errors combined. The GNO experiment is now terminated after altogether 58 solar exposure runs that were performed between May 20, 1998 and April 9, 2003. The combined result for GNO (I+II+III) is [62.9 + 5.5 - 5.3 (stat.) +- 2.5 (syst.)] SNU (1 sigma) or [62.9 + 6.0 - 5.9] SNU (1 sigma) with errors combined in quadrature. Overall, gallium based solar observations at LNGS (first in GALLEX, later in GNO) lasted from May 14, 1991 through April 9, 2003. The joint result from 123 runs in GNO and GALLEX is [69.3 +- 5.5 (incl. syst.)] SNU (1 sigma). The distribution of the individual run results is consistent with the hypothesis of a neutrino flux that is constant in time. Implications from the data in particle- and astrophysics are reiterated.Comment: 22 pages incl. 9 Figures and 8 Tables. to appear in: Physics Letters B (accepted April 13, 2005) PACS: 26.65.+t ; 14.60.P

    Atomic Scale Memory at a Silicon Surface

    Get PDF
    The limits of pushing storage density to the atomic scale are explored with a memory that stores a bit by the presence or absence of one silicon atom. These atoms are positioned at lattice sites along self-assembled tracks with a pitch of 5 atom rows. The writing process involves removal of Si atoms with the tip of a scanning tunneling microscope. The memory can be reformatted by controlled deposition of silicon. The constraints on speed and reliability are compared with data storage in magnetic hard disks and DNA.Comment: 13 pages, 5 figures, accepted by Nanotechnolog

    Edge-Based Compartmental Modeling for Infectious Disease Spread Part III: Disease and Population Structure

    Full text link
    We consider the edge-based compartmental models for infectious disease spread introduced in Part I. These models allow us to consider standard SIR diseases spreading in random populations. In this paper we show how to handle deviations of the disease or population from the simplistic assumptions of Part I. We allow the population to have structure due to effects such as demographic detail or multiple types of risk behavior the disease to have more complicated natural history. We introduce these modifications in the static network context, though it is straightforward to incorporate them into dynamic networks. We also consider serosorting, which requires using the dynamic network models. The basic methods we use to derive these generalizations are widely applicable, and so it is straightforward to introduce many other generalizations not considered here
    • …
    corecore