3,427 research outputs found
Density Functional Theory for the Photoionization Dynamics of Uracil
Photoionization dynamics of the RNA base Uracil is studied in the framework
of Density Functional Theory (DFT). The photoionization calculations take
advantage of a newly developed parallel version of a multicentric approach to
the calculation of the electronic continuum spectrum which uses a set of
B-spline radial basis functions and a Kohn-Sham density functional hamiltonian.
Both valence and core ionizations are considered. Scattering resonances in
selected single-particle ionization channels are classified by the symmetry of
the resonant state and the peak energy position in the photoelectron kinetic
energy scale; the present results highlight once more the site specificity of
core ionization processes. We further suggest that the resonant structures
previously characterized in low-energy electron collision experiments are
partly shifted below threshold by the photoionization processes. A critical
evaluation of the theoretical results providing a guide for future experimental
work on similar biosystems
Which solar neutrino data favour the LMA solution?
Assuming neutrino oscillations, global analyses of solar data find that the
LOW solution is significantly disfavoured, leaving LMA as the best solution.
But the preference for LMA rests on three weak hints: the spectrum of earth
matter effects (Super-Kamiokande sees an overall day/night asymmetry only at 1
sigma), the Cl rate (but LMA and LOW predictions are both above the measured
value), the Ga rate (newer data decrease towards the LOW predictions both in
GNO and SAGE). Only new data will tell us if LMA is the true solution.Comment: 4 pages, 2 figure
Polyhedral Cosmic Strings
Quantum field theory is discussed in M\"obius corner kaleidoscopes using the
method of images. The vacuum average of the stress-energy tensor of a free
field is derived and is shown to be a simple sum of straight cosmic string
expressions, the strings running along the edges of the corners. It does not
seem possible to set up a spin-half theory easily.Comment: 15 pages, 4 text figures not include
Localized Wavefunctions and Magnetic Band Structure for Lateral Semiconductor Superlattices
In this paper we present calculations on the electronic band structure of a
two-dimensional lateral superlattice subject to a perpendicular magnetic field
by employing a projection operator technique based on the ray-group of
magnetotranslation operators. We construct a new basis of appropriately
symmetrized Bloch-like wavefunctions as linear combination of well-localized
magnetic-Wannier functions. The magnetic field was consistently included in the
Wannier functions defined in terms of free-electron eigenfunctions in the
presence of external magnetic field in the symmetric gauge. Using the above
basis, we calculate the magnetic energy spectrum of electrons in a lateral
superlattice with bi-directional weak electrostatic modulation. Both a square
lattice and a triangular one are considered as special cases. Our approach
based on group theory handles the cases of integer and rational magnetic fluxes
in a uniform way and the provided basis could be convenient for further both
analytic and numerical calculations.Comment: 19 pages, 5 figures. accepted to Int. J. Mod. Phys. B (April 2006
Reduced field-of-view diffusion-weighted imaging of the lumbosacral enlargement: a pilot in vivo study of the healthy spinal cord at 3T
Diffusion tensor imaging (DTI) has recently started to be adopted into clinical investigations of spinal cord (SC) diseases. However, DTI applications to the lower SC are limited due to a number of technical challenges, related mainly to the even smaller size of the SC structure at this level, its position relative to the receiver coil elements and the effects of motion during data acquisition. Developing methods to overcome these problems would offer new means to gain further insights into microstructural changes of neurological conditions involving the lower SC, and in turn could help explain symptoms such as bladder and sexual dysfunction. In this work, the feasibility of obtaining grey and white matter (GM/WM) DTI indices such as axial/radial/mean diffusivity (AD/RD/MD) and fractional anisotropy (FA) within the
lumbosacral enlargement (LSE) was investigated using a reduced field-of-view (rFOV) single-shot echo-planar imaging (ss-EPI) acquisition in 14 healthy participants using a clinical 3T MR system. The scan-rescan reproducibility of the measurements was assessed by
calculating the percentage coefficient of variation (%COV). Mean FA was higher in WM compared to GM (0.58 and 0.4 in WM and GM respectively), AD and MD were higher in
WM compared to GM (1.66 µm2ms-1 and 0.94 µm2ms-1 in WM and 1.2 µm2ms-1 and 0.82 µm2ms-1 in GM for AD and MD respectively) and RD was lower in WM compared to GM
(0.58 µm2ms-1 and 0.63 µm2ms-1 respectively). The scan-rescan %COV was lower than 10% in all cases with the highest values observed for FA and the lowest for MD. This pilot study demonstrates that it is possible to obtain reliable tissue-specific estimation of DTI indices within the LSE using a rFOV ss-EPI acquisition. The DTI acquisition and analysis protocol presented here is clinically feasible and may be used in future investigations of neurological conditions implicating the lower SC
SO(3) Gauge Symmetry and Nearly Tri-bimaximal Neutrino Mixing
In this note I mainly focus on the neutrino physics part in my talk and
report the most recent progress made in \cite{YLW0}. It is seen that the
Majorana features of neutrinos and SO(3) gauge flavor symmetry can
simultaneously explain the smallness of neutrino masses and nearly
tri-bimaximal neutrino mixing when combining together with the mechanism of
approximate global U(1) family symmetry. The mixing angle and
CP-violating phase are in general nonzero and testable experimentally at the
allowed sensitivity. The model also predicts the existence of vector-like
Majorana neutrinos and charged leptons as well as new Higgs bosons, some of
them can be light and explored at the LHC and ILC.Comment: 8 pages, invited talk, contribute to the Proceedings of the 4th
International Conference on Flavor Physics (ICFP2007
Testing the robustness of laws of polysemy and brevity versus frequency
The pioneering research of G.K. Zipf on the relationship between word frequency and other word features led to the formulation of various linguistic laws. Here we focus on a couple of them: the meaning-frequency law, i.e. the tendency of more frequent words to be more polysemous, and the law of abbreviation, i.e. the tendency of more frequent words to be shorter. Here we evaluate the robustness of these laws in contexts where they have not been explored yet to our knowledge. The recovery of the laws again in new conditions provides support for the hypothesis that they originate from abstract mechanisms.Peer ReviewedPostprint (author's final draft
Complete results for five years of GNO solar neutrino observations
We report the complete GNO solar neutrino results for the measuring periods
GNO III, GNO II, and GNO I. The result for GNO III (last 15 solar runs) is
[54.3 + 9.9 - 9.3 (stat.)+- 2.3 (syst.)] SNU (1 sigma) or [54.3 + 10.2 - 9.6
(incl. syst.)] SNU (1 sigma) with errors combined. The GNO experiment is now
terminated after altogether 58 solar exposure runs that were performed between
May 20, 1998 and April 9, 2003. The combined result for GNO (I+II+III) is [62.9
+ 5.5 - 5.3 (stat.) +- 2.5 (syst.)] SNU (1 sigma) or [62.9 + 6.0 - 5.9] SNU (1
sigma) with errors combined in quadrature. Overall, gallium based solar
observations at LNGS (first in GALLEX, later in GNO) lasted from May 14, 1991
through April 9, 2003. The joint result from 123 runs in GNO and GALLEX is
[69.3 +- 5.5 (incl. syst.)] SNU (1 sigma). The distribution of the individual
run results is consistent with the hypothesis of a neutrino flux that is
constant in time. Implications from the data in particle- and astrophysics are
reiterated.Comment: 22 pages incl. 9 Figures and 8 Tables. to appear in: Physics Letters
B (accepted April 13, 2005) PACS: 26.65.+t ; 14.60.P
Atomic Scale Memory at a Silicon Surface
The limits of pushing storage density to the atomic scale are explored with a
memory that stores a bit by the presence or absence of one silicon atom. These
atoms are positioned at lattice sites along self-assembled tracks with a pitch
of 5 atom rows. The writing process involves removal of Si atoms with the tip
of a scanning tunneling microscope. The memory can be reformatted by controlled
deposition of silicon. The constraints on speed and reliability are compared
with data storage in magnetic hard disks and DNA.Comment: 13 pages, 5 figures, accepted by Nanotechnolog
Edge-Based Compartmental Modeling for Infectious Disease Spread Part III: Disease and Population Structure
We consider the edge-based compartmental models for infectious disease spread
introduced in Part I. These models allow us to consider standard SIR diseases
spreading in random populations. In this paper we show how to handle deviations
of the disease or population from the simplistic assumptions of Part I. We
allow the population to have structure due to effects such as demographic
detail or multiple types of risk behavior the disease to have more complicated
natural history. We introduce these modifications in the static network
context, though it is straightforward to incorporate them into dynamic
networks. We also consider serosorting, which requires using the dynamic
network models. The basic methods we use to derive these generalizations are
widely applicable, and so it is straightforward to introduce many other
generalizations not considered here
- …