61 research outputs found

    Dynamic Terrain: Vision Document

    Get PDF

    Cisplatin-induced emesis: systematic review and meta-analysis of the ferret model and the effects of 5-HT3 receptor antagonists

    Get PDF
    PURPOSE: The ferret cisplatin emesis model has been used for ~30 years and enabled identification of clinically used anti-emetics. We provide an objective assessment of this model including efficacy of 5-HT(3) receptor antagonists to assess its translational validity. METHODS: A systematic review identified available evidence and was used to perform meta-analyses. RESULTS: Of 182 potentially relevant publications, 115 reported cisplatin-induced emesis in ferrets and 68 were included in the analysis. The majority (n = 53) used a 10 mg kg(−1) dose to induce acute emesis, which peaked after 2 h. More recent studies (n = 11) also used 5 mg kg(−1), which induced a biphasic response peaking at 12 h and 48 h. Overall, 5-HT(3) receptor antagonists reduced cisplatin (5 mg kg(−1)) emesis by 68% (45–91%) during the acute phase (day 1) and by 67% (48–86%) and 53% (38–68%, all P < 0.001), during the delayed phase (days 2, 3). In an analysis focused on the acute phase, the efficacy of ondansetron was dependent on the dosage and observation period but not on the dose of cisplatin. CONCLUSION: Our analysis enabled novel findings to be extracted from the literature including factors which may impact on the applicability of preclinical results to humans. It reveals that the efficacy of ondansetron is similar against low and high doses of cisplatin. Additionally, we showed that 5-HT(3) receptor antagonists have a similar efficacy during acute and delayed emesis, which provides a novel insight into the pharmacology of delayed emesis in the ferret

    Induction of the GABA Cell Phenotype: An In Vitro Model for Studying Neurodevelopmental Disorders

    Get PDF
    Recent studies of the hippocampus have suggested that a network of genes is associated with the regulation of the GAD67 (GAD1) expression and may play a role in γ-amino butyric acid (GABA) dysfunction in schizophrenia (SZ) and bipolar disorder (BD). To obtain a more detailed understanding of how GAD67 regulation may result in GABAergic dysfunction, we have developed an in vitro model in which GABA cells are differentiated from the hippocampal precursor cell line, HiB5. Growth factors, such as PDGF, and BDNF, regulate the GABA phenotype by inducing the expression of GAD67 and stimulating the growth of cellular processes, many with growth cones that form appositions with the cell bodies and processes of other GAD67-positive cells. These changes are associated with increased expression of acetylated tubulin, microtubule-associated protein 2 (MAP2) and the post-synaptic density protein 95 (PSD95). The addition of BDNF, together with PDGF, increases the levels of mRNA and protein for GAD67, as well as the high affinity GABA uptake protein, GAT1. These changes are associated with increased concentrations of GABA in the cytoplasm of “differentiated” HiB5 neurons. In the presence of Ca2+ and K+, newly synthesized GABA is released extracellularly. When the HiB5 cells appear to be fully differentiated, they also express GAD65, parvalbumin and calbindin, and GluR subtypes as well as HDAC1, DAXX, PAX5, Runx2, associated with GAD67 regulation. Overall, these results suggest that the HiB5 cells can differentiate into functionally mature GABA neurons in the presence of gene products that are associated with GAD67 regulation in the adult hippocampus

    Music by the angels

    No full text
    https://digitalcommons.library.umaine.edu/mmb-vp-copyright/4979/thumbnail.jp

    Antigens expressed by myelinating glia cells induce peripheral cross-tolerance of endogenous CD8+ T cells

    Full text link
    Auto-reactivity of T cells is largely prevented by central and peripheral tolerance. Nevertheless, immunization with certain self-antigens emulsified in CFA induces autoimmunity in rodents, suggesting that tolerance to some self-antigens is not robust. To investigate the fate of nervous system-specific CD8(+) T cells, which only recently came up as being important contributors for MS pathogenesis, we developed a mouse model that allows inducible expression of lymphocytic choriomeningitis virus-derived CD8(+) T-cell epitopes specifically in oligodendrocytes and Schwann cells, the myelinating glia of the nervous system. These transgenic CD8(+) T-cell epitopes induced robust tolerance of endogenous auto-reactive T cells, which proved thymus-independent and was mediated by cross-presenting bone-marrow-derived cells. Immunohistological staining of secondary lymphoid organs demonstrated the presence of glia-derived antigens in DC, suggesting that peripheral tolerance of CD8(+) T cells results from uptake and presentation by steady state DC
    corecore