8 research outputs found

    Data from: Bottom-up and trait-mediated effects of resource quality on amphibian parasitism

    No full text
    Leaf litter subsidies are important resources for aquatic consumers like tadpoles and snails, causing bottom-up effects on wetland ecosystems. Recent studies have shown that variation in litter nutritional quality can be as important as litter quantity in driving these bottom-up effects. Resource subsidies likely also have indirect and trait-mediated effects on predation and parasitism, but these potential effects remain largely unexplored. We generated predictions for differential effects of litter nutrition and secondary polyphenolic compounds on tadpole (Lithobates sylvatica) exposure and susceptibility to Ribeiroia ondatrae, based on ecological stoichiometry and community-ecology theory. We predicted direct and indirect effects on key traits of the tadpole host (rates of growth, development and survival), the trematode parasite (production of the cercaria infective stages) and the parasite's snail intermediate host (growth and reproduction). To test these predictions, we conducted a large-scale mesocosm experiment using a natural gradient in the concentrations of nutrients (nitrogen) and toxic secondary compounds (polyphenolics) of nine leaf litter species. To differentiate between effects on exposure vs. susceptibility to infection, we included multiple infection experiments including one with constant per capita exposure. We found that increased litter nitrogen increased tadpole survival, and also increased cercaria production by the snail intermediate hosts, causing opposing effects on tadpole per capita exposure to trematode infection. Increased litter polyphenolics slowed tadpole development, leading to increased infection by increasing both their susceptibility to infection and the length of time they were exposed to parasites. Based on these results, recent shifts in forest composition towards more nitrogen-poor litter species should decrease trematode infection in tadpoles via density- and trait-mediated effects on the snail intermediate hosts. However, these shifts also involve increased abundance of litter species with high polyphenolic levels, which should increase trematode infection via trait-mediated effects on tadpoles. Future studies will be needed to determine the relative strength of these opposing effects in natural wetland communities

    Data from: Host and parasite thermal acclimation responses depend on the stage of infection

    No full text
    1. Global climate change is expected to alter patterns of temperature variability, which could influence species interactions including parasitism. Species interactions can be difficult to predict in variable-temperature environments because of thermal acclimation responses, i.e. physiological changes that allow organisms to adjust to a new temperature following a temperature shift. 2. The goal of this study was to determine how thermal acclimation influences host resistance to infection and to test for parasite acclimation responses, which might differ from host responses in important ways. 3. We tested predictions of three, non-mutually exclusive hypotheses regarding thermal acclimation effects on infection of green frog tadpoles (Lithobates clamitans) by the trematode parasite Ribeiroia ondatrae with fully replicated controlled-temperature experiments. Trematodes or tadpoles were independently acclimated to a range of ‘acclimation temperatures’ prior to shifting them to new ‘performance temperatures’ for experimental infections. 4. Trematodes that were acclimated to intermediate temperatures (19–22 °C) had greater encystment success across temperatures than either cold- or warm-acclimated trematodes. However, host acclimation responses varied depending on the stage of infection (encystment vs. clearance): warm- (22–28 °C) and cold-acclimated (13–19 °C) tadpoles had fewer parasites encyst at warm and cold performance temperatures, respectively, whereas intermediate-acclimated tadpoles (19–25 °C) cleared the greatest proportion of parasites in the week following exposure. 5. These results suggest that tadpoles use different immune mechanisms to resist different stages of trematode infection, and that each set of mechanisms has unique responses to temperature variability. Our results highlight the importance of considering thermal responses of both parasites and hosts when predicting disease patterns in variable-temperature environments
    corecore