1,265 research outputs found

    Antiresonance phase shift in strongly coupled cavity QED

    Full text link
    We investigate phase shifts in the strong coupling regime of single-atom cavity quantum electrodynamics (QED). On the light transmitted through the system, we observe a phase shift associated with an antiresonance and show that both its frequency and width depend solely on the atom, despite the strong coupling to the cavity. This shift is optically controllable and reaches 140 degrees - the largest ever reported for a single emitter. Our result offers a new technique for the characterization of complex integrated quantum circuits.Comment: 5 pages, 5 figure

    A Model Predictive Control Framework for Asymptotic Stabilization of Discretized Hybrid Dynamical Systems

    Get PDF
    We present a model predictive control (MPC) algorithm for the appropriate discretizations of (nondiscretized) hybrid dynamical systems. The optimization problem associated with the MPC algorithm is formulated with a set-based prediction horizon and the discretized hybrid dynamics as part of its constraints. Sufficient conditions guaranteeing structural properties of the problem and asymptotic stability of a closed set are revealed. These conditions include the existence of a control Lyapunov function assuring an invariance property on the terminal constraint set. In addition, we formulate a method to obtain numerical solutions to the hybrid optimal control problem, amenable to off-the-shelf optimization solvers, and demonstrate this method on the discretization of a prototypical hybrid system

    Rb-85 tunable-interaction Bose-Einstein condensate machine

    Full text link
    We describe our experimental setup for creating stable Bose-Einstein condensates of Rb-85 with tunable interparticle interactions. We use sympathetic cooling with Rb-87 in two stages, initially in a tight Ioffe-Pritchard magnetic trap and subsequently in a weak, large-volume crossed optical dipole trap, using the 155 G Feshbach resonance to manipulate the elastic and inelastic scattering properties of the Rb-85 atoms. Typical Rb-85 condensates contain 4 x 10^4 atoms with a scattering length of a=+200a_0. Our minimalist apparatus is well-suited to experiments on dual-species and spinor Rb condensates, and has several simplifications over the Rb-85 BEC machine at JILA (Papp, 2007; Papp and Wieman, 2006), which we discuss at the end of this article.Comment: 10 pages, 8 figure

    Gradient echo memory in an ultra-high optical depth cold atomic ensemble

    Get PDF
    Quantum memories are an integral component of quantum repeaters - devices that will allow the extension of quantum key distribution to communication ranges beyond that permissible by passive transmission. A quantum memory for this application needs to be highly efficient and have coherence times approaching a millisecond. Here we report on work towards this goal, with the development of a 87^{87}Rb magneto-optical trap with a peak optical depth of 1000 for the D2 F=2→F′=3F=2 \rightarrow F'=3 transition using spatial and temporal dark spots. With this purpose-built cold atomic ensemble to implement the gradient echo memory (GEM) scheme. Our data shows a memory efficiency of 80±280\pm 2% and coherence times up to 195 μ\mus, which is a factor of four greater than previous GEM experiments implemented in warm vapour cells.Comment: 15 pages, 5 figure

    Cold atom gravimetry with a Bose-Einstein Condensate

    Full text link
    We present a cold atom gravimeter operating with a sample of Bose-condensed Rubidium-87 atoms. Using a Mach-Zehnder configuration with the two arms separated by a two-photon Bragg transition, we observe interference fringes with a visibility of 83% at T=3 ms. We exploit large momentum transfer (LMT) beam splitting to increase the enclosed space-time area of the interferometer using higher-order Bragg transitions and Bloch oscillations. We also compare fringes from condensed and thermal sources, and observe a reduced visibility of 58% for the thermal source. We suspect the loss in visibility is caused partly by wavefront aberrations, to which the thermal source is more susceptible due to its larger transverse momentum spread. Finally, we discuss briefly the potential advantages of using a coherent atomic source for LMT, and present a simple mean-field model to demonstrate that with currently available experimental parameters, interaction-induced dephasing will not limit the sensitivity of inertial measurements using freely-falling, coherent atomic sources.Comment: 6 pages, 4 figures. Final version, published PR

    Penerapan Standar Akuntansi Keuangan Entitas Tanpa Akuntabilitas pada UMKM Kota Pangkalpinang

    Get PDF
     The purpose of this study was to membukti whether the competence of human resources, commitment, use of information technology, education owner, and qualitative financial report on the implementation of Financial Accounting Standards Entities Without Public Accountability (SAK ETAP) on SMEs in Pangkalpinang. Of the population, sampling be carried out so that the 100 respondents who then performed the sampling cluster sampling. The results showed formed two factors, namely first is qualitative financial statements and the second factor is the education of the owner. Lowest variable is socialization, it obtained information from respondents who claimed to have been entirely done about SAK ETAP dissemination of relevant parties such as the Department of Industry, Trade, Cooperatives and SMEs Pangkalpinang, Universities, and the Indonesian Institute of Accountants ( IAI) Territory of the Pacific Islands

    Quantum projection noise limited interferometry with coherent atoms in a Ramsey type setup

    Full text link
    Every measurement of the population in an uncorrelated ensemble of two-level systems is limited by what is known as the quantum projection noise limit. Here, we present quantum projection noise limited performance of a Ramsey type interferometer using freely propagating coherent atoms. The experimental setup is based on an electro-optic modulator in an inherently stable Sagnac interferometer, optically coupling the two interfering atomic states via a two-photon Raman transition. Going beyond the quantum projection noise limit requires the use of reduced quantum uncertainty (squeezed) states. The experiment described demonstrates atom interferometry at the fundamental noise level and allows the observation of possible squeezing effects in an atom laser, potentially leading to improved sensitivity in atom interferometers.Comment: 8 pages, 8 figures, published in Phys. Rev.

    A Bose-condensed, simultaneous dual species Mach-Zehnder atom interferometer

    Full text link
    This paper presents the first realisation of a simultaneous 87^{87}Rb -85^{85}Rb Mach-Zehnder atom interferometer with Bose-condensed atoms. A number of ambitious proposals for precise terrestrial and space based tests of the Weak Equivalence Principle rely on such a system. This implementation utilises hybrid magnetic-optical trapping to produce spatially overlapped condensates with a duty cycle of 20s. A horizontal optical waveguide with co-linear Bragg beamsplitters and mirrors is used to simultaneously address both isotopes in the interferometer. We observe a non-linear phase shift on a non-interacting 85^{85}Rb interferometer as a function of interferometer time, TT, which we show arises from inter-isotope scattering with the co-incident 87^{87}Rb interferometer. A discussion of implications for future experiments is given.Comment: 7 pages, 5 figures. The authors welcome comments and feedback on this manuscrip

    11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium

    Full text link
    We present a narrow linewidth continuous laser source with over 11 Watts of output power at 780nm, based on single-pass frequency doubling of an amplified 1560nm fibre laser with 36% efficiency. This source offers a combination of high power, simplicity, mode quality and stability. Without any active stabilization, the linewidth is measured to be below 10kHz. The fibre seed is tunable over 60GHz, which allows access to the D2 transitions in 87Rb and 85Rb, providing a viable high-power source for laser cooling as well as for large-momentum-transfer beamsplitters in atom interferometry. Sources of this type will pave the way for a new generation of high flux, high duty-cycle degenerate quantum gas experiments.Comment: 5 pages, 3 figure

    Optically trapped atom interferometry using the clock transition of large Rb-87 Bose-Einstein condensates

    Full text link
    We present a Ramsey-type atom interferometer operating with an optically trapped sample of 10^6 Bose-condensed Rb-87 atoms. The optical trap allows us to couple the |F =1, mF =0>\rightarrow |F =2, mF =0> clock states using a single photon 6.8GHz microwave transition, while state selective readout is achieved with absorption imaging. Interference fringes with contrast approaching 100% are observed for short evolution times. We analyse the process of absorption imaging and show that it is possible to observe atom number variance directly, with a signal-to-noise ratio ten times better than the atomic projection noise limit on 10^6 condensate atoms. We discuss the technical and fundamental noise sources that limit our current system, and outline the improvements that can be made. Our results indicate that, with further experimental refinements, it will be possible to produce and measure the output of a sub-shot-noise limited, large atom number BEC-based interferometer. In an addendum to the original paper, we attribute our inability to observe quantum projection noise to the stability of our microwave oscillator and background magnetic field. Numerical simulations of the Gross-Pitaevskii equations for our system show that dephasing due to spatial dynamics driven by interparticle interactions account for much of the observed decay in fringe visibility at long interrogation times. The simulations show good agreement with the experimental data when additional technical decoherence is accounted for, and suggest that the clock states are indeed immiscible. With smaller samples of 5 \times 10^4 atoms, we observe a coherence time of {\tau} = (1.0+0.5-0.3) s.Comment: 22 pages, 6 figures Addendum: 11 pages, 6 figure
    • …
    corecore