51 research outputs found
Changes in the Circadian Rhythm in Patients with Primary Glaucoma
Purpose
The current study was undertaken to investigate whether glaucoma affects the sleep quality and whether there is any difference between patients with primary glaucoma (primary open angle glaucoma, POAG and primary angle-closure glaucoma, PACG) and healthy subjects, using a validated self-rated questionnaire, the Pittsburgh Sleep Quality Index (PSQI).
Methods
The sleep quality of patients with POAG and PACG was tested against normal controls. Subjects were divided into three sub-groups according to age. Differences in the frequency of sleep disturbances (PSQI score >7) were assessed. The differences of sleep quality within the three groups and within the POAG group depending on the patients’ intraocular pressure (IOP) and impairment of visual field (VF) were also studied.
Results
92 POAG patients, 48 PACG patients and 199 controls were included. Sleep quality declined with age in control and POAG group (tendency chi-square, P0.05). No significant differences were found in POAG group between patients with a highest IOP in daytime and at nighttime (χ2-test, P>0.05).
Conclusions
The prevalence of sleep disorders was higher in patients with POAG and PACG than in controls. PACG patients seemed to have a more serious problem of sleep disorders than POAG patients between 61 to 80 years old. No correlation was found between the prevalence of sleep disorders and impairment of VF or the time when POAG patients showed a highest IOP
The Circadian Response of Intrinsically Photosensitive Retinal Ganglion Cells
Intrinsically photosensitive retinal ganglion cells (ipRGC) signal environmental
light level to the central circadian clock and contribute to the pupil light
reflex. It is unknown if ipRGC activity is subject to extrinsic (central) or
intrinsic (retinal) network-mediated circadian modulation during light
entrainment and phase shifting. Eleven younger persons (18–30 years) with
no ophthalmological, medical or sleep disorders participated. The activity of
the inner (ipRGC) and outer retina (cone photoreceptors) was assessed hourly
using the pupil light reflex during a 24 h period of constant environmental
illumination (10 lux). Exogenous circadian cues of activity, sleep, posture,
caffeine, ambient temperature, caloric intake and ambient illumination were
controlled. Dim-light melatonin onset (DLMO) was determined from salivary
melatonin assay at hourly intervals, and participant melatonin onset values were
set to 14 h to adjust clock time to circadian time. Here we demonstrate in
humans that the ipRGC controlled post-illumination pupil response has a
circadian rhythm independent of external light cues. This circadian variation
precedes melatonin onset and the minimum ipRGC driven pupil response occurs post
melatonin onset. Outer retinal photoreceptor contributions to the inner retinal
ipRGC driven post-illumination pupil response also show circadian variation
whereas direct outer retinal cone inputs to the pupil light reflex do not,
indicating that intrinsically photosensitive (melanopsin) retinal ganglion cells
mediate this circadian variation
Melanopsin as a Sleep Modulator: Circadian Gating of the Direct Effects of Light on Sleep and Altered Sleep Homeostasis in Opn4−/− Mice
Analyses in mice deficient for the blue-light-sensitive photopigment melanopsin show that direct effects of light on behavior and EEG depend on the time of day. The data further suggest an unexpected role for melanopsin in sleep homeostasis
Differential arousal regulation by prokineticin 2 signaling in the nocturnal mouse and the diurnal monkey
The temporal organization of activity/rest or sleep/wake rhythms for mammals is regulated by the interaction of light/dark cycle and circadian clocks. The neural and molecular mechanisms that confine the active phase to either day or night period for the diurnal and the nocturnal mammals are unclear. Here we report that prokineticin 2, previously shown as a circadian clock output molecule, is expressed in the intrinsically photosensitive retinal ganglion cells, and the expression of prokineticin 2 in the intrinsically photosensitive retinal ganglion cells is oscillatory in a clock-dependent manner. We further show that the prokineticin 2 signaling is required for the activity and arousal suppression by light in the mouse. Between the nocturnal mouse and the diurnal monkey, a signaling receptor for prokineticin 2 is differentially expressed in the retinorecipient suprachiasmatic nucleus and the superior colliculus, brain projection targets of the intrinsically photosensitive retinal ganglion cells. Blockade with a selective antagonist reveals the respectively inhibitory and stimulatory effect of prokineticin 2 signaling on the arousal levels for the nocturnal mouse and the diurnal monkey. Thus, the mammalian diurnality or nocturnality is likely determined by the differential signaling of prokineticin 2 from the intrinsically photosensitive retinal ganglion cells onto their retinorecipient brain targets
Cones are required for normal temporal responses to light of phase shifts and clock gene expression
In mammals, non-visual responses to light involve intrinsically photosensitive melanopsin-expressing retinal ganglion cells (ipRGCs) that receive synaptic inputs from rod and cone photoreceptors. Several studies have shown that cones also play a role in light entrainment, photic responses of the suprachiasmatic nucleus (SCN), pupil constriction, and sleep induction. These studies suggest that cones are mainly involved in the initial response to light, whereas melanopsin provides a sustained input for non-visual responses during continued light exposure. Based on this idea, we explored the effects of the absence of middle-wavelength (MW)-cones on the temporal responses of circadian behavior and clock gene expression in light. In mice lacking MW-cones, our results show a reduction in behavioral phase shifts in response to light stimulations of short duration at 480 and 530***Missing image substitution***nm, but no alteration for short-wavelength (360-nm) light exposures. Similarly, induction of the period gene mPer1 and mPer2 mRNAs in the SCN are attenuated in response to light exposures of mid to long wavelengths. Modeling of the photoresponses shows that mice lacking MW-cones have an overall reduction in sensitivity that increases with longer wavelengths. The differences in photic responsiveness are consistent with the idea that cones provide a strong initial phasic input to the circadian system at light-onset and may confer a priming effect on ipRGC responses to sub-threshold light exposures. In summary, the contribution of MW-cones is essential for the normal expression of phase shifts and clock gene induction by light in mammals
Distinct contributions of rod, cone and melanopsin photoreceptors to encoding irradiance
- …
