139 research outputs found

    Accelerated Tests on Si and SiC Power Transistors with Thermal, Fast and Ultra-Fast Neutrons

    Get PDF
    Neutron test campaigns on silicon (Si) and silicon carbide (SiC) power MOSFETs and IGBTs were conducted at the TRIGA (Training, Research, Isotopes, General Atomics) Mark II (Pavia, Italy) nuclear reactor and ChipIr-ISIS Neutron and Muon Source (Didcot, U.K.) facility. About 2000 power transistors made by STMicroelectronics were tested in all the experiments. Tests with thermal and fast neutrons (up to about 10 MeV) at the TRIGA Mark II reactor showed that single-event burnout (SEB) failures only occurred at voltages close to the rated drain-source voltage. Thermal neutrons did not induce SEB, nor degradation in the electrical parameters of the devices. SEB failures during testing at ChipIr with ultra-fast neutrons (1-800 MeV) were evaluated in terms of failure in time (FIT) versus derating voltage curves according to the JEP151 procedure of the Joint Electron Device Engineering Council (JEDEC). These curves, even if scaled with die size and avalanche voltage, were strongly linked to the technological processes of the devices, although a common trend was observed that highlighted commonalities among the failures of different types of MOSFETs. In both experiments, we observed only SEB failures without single-event gate rupture (SEGR) during the tests. None of the power devices that survived the neutron tests were degraded in their electrical performances. A study of the worst-case bias condition (gate and/or drain) during irradiation was performed

    Understanding the potentiality of accelerator based-boron neutron capture therapy for osteosarcoma: Dosimetry assessment based on the reported clinical experience

    Get PDF
    Background: Osteosarcoma is the most frequent primary malignant bone tumour, and its incidence is higher in children and adolescents, for whom it represents more than 10% of solid cancers. Despite the introduction of adjuvant and neo-adjuvant chemotherapy that markedly increased the success rate in the treatment, aggressive surgery is still needed and a considerable percentage of patients do not survive due to recurrences or early metastases. Boron Neutron Capture Therapy (BNCT), an experimental radiotherapy, was investigated as a treatment that could allow a less aggressive surgery by killing infiltrated tumour cells in the surrounding healthy tissues. BNCT requires an intense neutron beam to ensure irradiation times of the order of 1h. In Italy, a Radio Frequency Quadrupole (RFQ) proton accelerator has been designed and constructed for BNCT, and a suitable neutron spectrum was tailored by means of Monte Carlo calculations. This paper explores the feasibility of BNCT to treat osteosarcoma using this neutron source based on accelerator. Methods: The therapeutic efficacy of BNCT was analysed evaluating the dose distribution obtained in a clinical case of femur osteosarcoma. Mixed field dosimetry was assessed with two different formalisms whose parameters were specifically derived from radiobiological experiments involving in vitro UMR-106 osteosarcoma cell survival assays and boron concentration assessments in an animal model of osteosarcoma. A clinical case of skull osteosarcoma treated with BNCT in Japan was re-evaluated from the point of view of dose calculation and used as a reference for comparison. Results: The results in the case of femur osteosarcoma show that the RFQ beam would ensure a suitable tumour dose painting in a total irradiation time of less than an hour. Comparing the dosimetry between the analysed case and the treated patient in Japan it turns out that doses obtained in the femur tumour are at least as good as the ones delivered in the skull osteosarcoma. The same is concluded when the comparison is carried out taking into account osteosarcoma irradiations with photon radiation therapy. Conclusions: The possibility to apply BNCT to osteosarcoma would allow a multimodal treatment consisting in neo-adjuvant chemotherapy, high-LET selective radiation treatment and a more conservative surgery.Fil: Bortolussi, Silva. University of Pavia; ItaliaFil: Postuma, Ian. University of Pavia; ItaliaFil: Protti, Nicoletta. University of Pavia; ItaliaFil: Provenzano, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Ferrari, Cinzia. University of Pavia; ItaliaFil: Cansolino, Laura. University of Pavia; ItaliaFil: Dionigi, Paolo. University of Pavia; ItaliaFil: Galasso, Olimpio. University of Catanzaro; ItaliaFil: Gasparini, Giorgio. University of Catanzaro; ItaliaFil: Altieri, Saverio. University of Pavia; ItaliaFil: Miyatake, Shin Ichi. Osaka Medical College; JapónFil: González, Sara Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentin

    Extending neutron autoradiography technique for boron concentration measurements in hard tissues

    Get PDF
    The neutron autoradiography technique using polycarbonate nuclear track detectors (NTD) has been extended to quantify the boron concentration in hard tissues, an application of special interest in Boron Neutron Capture Therapy (BNCT). Chemical and mechanical processing methods to prepare thin tissue sections as required by this technique have been explored. Four different decalcification methods governed by slow and fast kinetics were tested in boron-loaded bones. Due to the significant loss of the boron content, this technique was discarded. On the contrary, mechanical manipulation to obtain bone powder and tissue sections of tens of microns thick proved reproducible and suitable, ensuring a proper conservation of the boron content in the samples. A calibration curve that relates the 10B concentration of a bone sample and the track density in a Lexan NTD is presented. Bone powder embedded in boric acid solution with known boron concentrations between 0 and 100 ppm was used as a standard material. The samples, contained in slim Lexan cases, were exposed to a neutron fluence of 1012 cm−2 at the thermal column central facility of the RA-3 reactor (Argentina). The revealed tracks in the NTD were counted with an image processing software. The effect of track overlapping was studied and corresponding corrections were implemented in the presented calibration curve. Stochastic simulations of the track densities produced by the products of the 10B thermal neutron capture reaction for different boron concentrations in bone were performed and compared with the experimental results. The remarkable agreement between the two curves suggested the suitability of the obtained experimental calibration curve. This neutron autoradiography technique was finally applied to determine the boron concentration in pulverized and compact bone samples coming from a sheep experimental model. The obtained results for both type of samples agreed with boron measurements carried out by ICP-OES within experimental uncertainties. The fact that the histological structure of bone sections remains preserved allows for future boron microdistribution analysis.Fil: Provenzano, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Olivera, María Silvina. Comisión Nacional de Energía Atómica; ArgentinaFil: Saint Martin, María Laura Gisela. Comisión Nacional de Energía Atómica; ArgentinaFil: Rodriguez, Luis Miguel. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Fregenal, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Thorp, Silvia Inés. Comisión Nacional de Energía Atómica; ArgentinaFil: Pozzi, Emiliano César Cayetano. Comisión Nacional de Energía Atómica; ArgentinaFil: Curotto, Paula. Comisión Nacional de Energía Atómica; ArgentinaFil: Postuma, Ian. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Altieri, Saverio. Istituto Nazionale di Fisica Nucleare; Italia. Universita Degli Studi Di Pavia; ItaliaFil: González, Sara Josefina. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bortolussi, Silva. Istituto Nazionale di Fisica Nucleare; Italia. Universita Degli Studi Di Pavia; ItaliaFil: Portu, Agustina Mariana. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Neutron irradiation of RPCs for the CMS experiment

    Get PDF
    All the CMS muon stations will be equipped with Resistive Plate Chambers (RPCs). They will be exposed to high neutron background environment during the LHC running. In order to verify the safe operation of these detectors, an irradiation test has been carried out with two RPCs at high neutron flux (about ), integrating values of dose and fluence equivalent to 10 LHC-years. Before and after the irradiation, the performance of the detectors was studied with cosmic muons, showing no relevant aging effects. Moreover, no indication of damage or chemical changes were observed on the electrode surfaces

    The RPC system for the CMS experiment at the LHC

    Get PDF
    The CMS detector at the LHC has a redundant muon system. Two independent muon systems are used in the L1 trigger. One of them is based on wire chambers, the other on RPC detectors. Properly combining the answers of the two systems results in a highly efficient L1 trigger with high flexibility from the point of view of rate control. Simulation results show, however, that the RPC system suffers from false triggers caused by coincidence of spurious hits. System improvements, which could avoid oiling the chambers, are possible. RPCs have also proved to be very useful for muon track reconstruction

    Twin-Shaping Filter Technique Applied to CZT Detectors

    Get PDF
    CdTe/CdZnTe is an attractive and consolidated material with which to realize detectors with good efficiency and energy resolution, operating at room temperature for a large variety of applications such as astrophysics, medical imaging and security. However, this type of material suffers from the low mobility of the charge carriers (particularly the holes), which are trapped and so degrade the detector response in terms of charge collection efficiency, energy resolution and photopeak efficiency. The response of a planar CdTe/CdZnTe detector, which depends on the distance between the charge formation position and the collecting electrodes, can be improved by using two kinds of techniques, based on the optimization of the electrode geometry and/or signal compensation methods. We are studying the feasibility and the reliability of a biparametric method that uses a twin pulse shaping active filter to analyze each signal from the detector twice: one “Slow”, which is proportional to the energy of the incident photon, and one “Fast”, which depends on the position of the interaction with respect to the collecting electrode. In this paper we describe the bi-parametric technique applied to planar CdZnTe detectors grown by CNR/IMEM and to Spectrometer Grade detectors. We report the experimental results in terms of energy resolution, peak-to valley ratio and photopeak efficiency, as well as the compensated spectra obtained as a function of the bias voltage, photon energy and shaping time pairs. We also report the results obtained by using a CdZnTe drift strip detector. Furthermore, this technique could be implemented in an array of detectors, whose front-end electronics is composed of ASICs, where the shaping time can be selected for each channel, like the RENA-3 IC (NOVA R&D)

    Lithium halide filled carbon nanocapsules: Paving the way towards lithium neutron capture therapy (LiNCT)

    Get PDF
    Neutron capture therapy (NCT) is a form of radiotherapy that exploits the potential of some specific isotopes to capture thermal neutrons and subsequently yield high linear energy transfer (LET) particles, suitable for cancer treatment. Recently, relevant technological improvements have been made in terms of accelerators as suitable neutron sources for NCT at hospitals. However, low selective delivery of current drugs to cancer cells remains as the main challenge for successful clinical application of NCT. This work presents an innovative and previously unexplored approach for the design of nanotherapeutic NCT agents. Herein, a new concept based on carbon nanomaterials that seal 6Li active NCT nuclides is investigated. The 6Li active species are located in the inner cavity of the nanocarrier (carbon nanohorns or carbon nanotubes) and therefore, completely protected from the biological environment, avoiding toxicity and degradation. After encapsulation of the active cargo, the external surface of the nanocarrier is modified for improved biocompatibility. The developed 6Li-filled carbon nanohorns offered the possibility to explore 6Li compounds as active NCT agents by delivering therapeutic doses to cancer cells. We envisage that nanoencapsulation of 6Li can trigger the successful development and implementation of Lithium Neutron Cancer Therapy (LiNCT).G. T. acknowledges funding from ERC Consolidator Grant NEST (725743). G.G. gratefully acknowledges the funding by the Portuguese Science Foundation (FCT) for Programme Stimulus of Scientific Employment – Individual Support (CEECIND/01913/2017), financial support of project CARBONCT (2022.03596.PTDC), TEMA UIDB/00481/2020 and UIDP/00481/2020; and CENTRO-01-0145-FEDER-022083 - Centro Portugal Regional Operational Programme (Centro2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund. In addition, support through the project IF/00894/2015 and within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020, financed by national funds through the FCT/MEC (PIDDAC) is gratefully acknowledged. We acknowledge funding by INFN (CSN5)-project ENTER_BNCT. ICMAB and ICN2 acknowledge financial support from the Spanish Ministry of Economy and Competitiveness (Spain), through the “Severo Ochoa” Programme for Centres of Excellence in R&D (CEX2019-000917-S and CEX2021-001214-S respectively). ICN2 is supported by CERCA programme. We acknowledge funding from Generalitat de Catalunya (2021-SGR-00439, 2017 SGR 327). M.Ll. has carried out this work in the framework of the Doctoral Degree Program in Materials Science of the Universitat Autònoma de Barcelona. We acknowledge fruitful discussions with Manuel Altabas and support with the XPS analysis by Guillaume Sauthier.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe

    Experimental results on RPC neutron sensitivity

    Get PDF
    Abstract RPC neutron sensitivity has been studied during two tests done with different neutrons energies. In the first test, neutrons from spontaneous fission events of 252 Cf were used (average energy 2 MeV ); while in the second test neutrons were produced using a 50 MeV deuteron beam on a 1 cm thick beryllium target (average energy 20 MeV ). Preliminary results show that the neutron sensitivity in double gap mode is (0.52±0.03)×10−3 at about 2 MeV and (5.3±0.5)×10−3 at about 20 MeV
    corecore