66 research outputs found

    The Genotype Specific Competitive Ability Does Not Correlate with Infection in Natural Daphnia magna Populations

    Get PDF
    Different evolutionary hypotheses predict a correlation between the fitness of a genotype in the absence of infection and the likelihood to become infected. The cost of resistance hypothesis predicts that resistant genotypes pay a cost of being resistant and are less fit in the absence of parasites. The inbreeding-infection hypothesis predicts that the susceptible individuals are less fit due to inbreeding depression.Here we tested if a host's natural infection status was associated with its fitness. First, we experimentally confirmed that cured but formerly infected Daphnia magna are genetically more susceptible to reinfections with Octosporea bayeri than naturally uninfected D. magna. We then collected from each of 22 populations both uninfected and infected D. magna genotypes. All were treated against parasites and kept in their asexual phase. We estimated their relative fitness in an experiment against a tester genotype and in another experiment in direct competition. Consistently, we found no difference in competitive abilities between uninfected and cured but formerly infected genotypes. This was the case both in the presence as well as in the absence of sympatric parasites during the competition trials.Our data do not support the inbreeding-infection hypothesis. They also do not support a cost of resistance, however ignoring other parasite strains or parasite species. We suggest as a possible explanation for our results that resistance genes might segregate largely independently of other fitness associated genes in this system

    Spectrum of centrosome autoantibodies in childhood varicella and post-varicella acute cerebellar ataxia

    Get PDF
    BACKGROUND: Sera from children with post-varicella infections have autoantibodies that react with centrosomes in brain and tissue culture cells. We investigated the sera of children with infections and post-varicella ataxia and related conditions for reactivity to five recombinant centrosome proteins: γγ-enolase, pericentrin, ninein, PCM-1, and Mob1. METHODS: Sera from 12 patients with acute post-varicella ataxia, 1 with post-Epstein Barr virus (EBV) ataxia, 5 with uncomplicated varicella infections, and other conditions were tested for reactivity to cryopreserved cerebellum tissue and recombinant centrosome proteins. The distribution of pericentrin in the cerebellum was studied by indirect immunofluorescence (IIF) using rabbit antibodies to the recombinant protein. Antibodies to phospholipids (APL) were detected by ELISA. RESULTS: Eleven of 12 children with post-varicella ataxia, 4/5 children with uncomplicated varicella infections, 1/1 with post-EBV ataxia, 2/2 with ADEM, 1/2 with neuroblastoma and ataxia, and 2/2 with cerebellitis had antibodies directed against 1 or more recombinant centrosome antigens. Antibodies to pericentrin were seen in 5/12 children with post-varicella ataxia but not in any of the other sera tested. IIF demonstrated that pericentrin is located in axons and centrosomes of cerebellar cells. APL were detected in 75% of the sera from children with post-varicella ataxia and 50% of children with varicella without ataxia and in none of the controls. CONCLUSION: This is the first study to show the antigen specificity of anti-centrosome antibodies in children with varicella. Our data suggest that children with post-varicella ataxia have unique autoantibody reactivity to pericentrin

    Prognostic and predictive value of TOPK stratified by KRAS and BRAF gene alterations in sporadic, hereditary and metastatic colorectal cancer patients

    Get PDF
    BACKGROUND: Our aim was to investigate the prognostic and predictive value of the oncogenic MAPKK-like protein T-cell-originated protein kinase (TOPK) stratified by KRAS and BRAF mutations in patients with sporadic, hereditary and metastatic colorectal cancer (CRC) treated with anti-EGFR therapy. METHODS: Immunohistochemistry (IHC) for TOPK was performed on four study groups. Group 1 included two subgroups of 543 and 501 sporadic CRC patients used to test the reliability of TOPK expression by IHC. In Group 2, representing an additional 222 sporadic CRCs, the prognostic effect of TOPK stratified by KRAS and BRAF was assessed. The prognostic effect of TOPK was further analysed in Group 3, representing 71 hereditary Lynch syndrome-associated CRC patients. In Group 4, the predictive and prognostic value of TOPK was analysed on 45 metastatic patients treated with cetuximab or panitumumab stratified by KRAS and BRAF gene status. RESULTS: In both sporadic CRC subgroups (Group 1), associations of diffuse TOPK expression with clinicopathological features were reproducible. Molecular analysis of sporadic CRCs in Group 2 showed that diffuse TOPK expression was associated with KRAS and BRAF mutations (p<0.001) and with poor outcome in patients with either mutation in univariate and multivariate analysis (P=0.017). In hereditary patients (Group 3), diffuse TOPK was linked to advanced pT stage. In metastatic patients treated with anti-EGFR therapy (Group 4), diffuse TOPK expression was linked to dismal outcome despite objective response to treatment (P=0.01). CONCLUSIONS: TOPK expression is an unfavourable prognostic indicator in sporadic patients with KRAS or BRAF mutations and also in patients with metastatic disease experiencing a response to anti-EGFR therapies. The inhibition of TOPK, which could benefit 30-40% of CRC patients, may represent a new avenue of investigation for targeted therapy

    ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook

    Get PDF
    Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as ‘Medusa head antibodies’ due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook

    Epidemiology of a Daphnia-Multiparasite System and Its Implications for the Red Queen

    Get PDF
    The Red Queen hypothesis can explain the maintenance of host and parasite diversity. However, the Red Queen requires genetic specificity for infection risk (i.e., that infection depends on the exact combination of host and parasite genotypes) and strongly virulent effects of infection on host fitness. A European crustacean (Daphnia magna) - bacterium (Pasteuria ramosa) system typifies such specificity and high virulence. We studied the North American host Daphnia dentifera and its natural parasite Pasteuria ramosa, and also found strong genetic specificity for infection success and high virulence. These results suggest that Pasteuria could promote Red Queen dynamics with D. dentifera populations as well. However, the Red Queen might be undermined in this system by selection from a more common yeast parasite (Metschnikowia bicuspidata). Resistance to the yeast did not correlate with resistance to Pasteuria among host genotypes, suggesting that selection by Metschnikowia should proceed relatively independently of selection by Pasteuria

    ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook

    Full text link

    Species-Area Relationships Are Controlled by Species Traits

    Get PDF
    The species-area relationship (SAR) is one of the most thoroughly investigated empirical relationships in ecology. Two theories have been proposed to explain SARs: classical island biogeography theory and niche theory. Classical island biogeography theory considers the processes of persistence, extinction, and colonization, whereas niche theory focuses on species requirements, such as habitat and resource use. Recent studies have called for the unification of these two theories to better explain the underlying mechanisms that generates SARs. In this context, species traits that can be related to each theory seem promising. Here we analyzed the SARs of butterfly and moth assemblages on islands differing in size and isolation. We tested whether species traits modify the SAR and the response to isolation. In addition to the expected overall effects on the area, traits related to each of the two theories increased the model fit, from 69% up to 90%. Steeper slopes have been shown to have a particularly higher sensitivity to area, which was indicated by species with restricted range (slope  = 0.82), narrow dietary niche (slope  = 0.59), low abundance (slope  = 0.52), and low reproductive potential (slope  = 0.51). We concluded that considering species traits by analyzing SARs yields considerable potential for unifying island biogeography theory and niche theory, and that the systematic and predictable effects observed when considering traits can help to guide conservation and management actions

    Alloplastische Implantate in der Kopf- und Halschirurgie.

    Get PDF

    Reduced body sizes in climate-impacted tropical insect assemblages are primarily explained by range shifts

    Get PDF
    Both community composition changes due to species redistribution and within-species size shifts may alter body size structures under climate warming. Here we assess the relative contribution of these processes in community-level body size changes in tropical moth assemblages that moved uphill during a period of warming. Based on resurvey data for seven assemblages (>8000 individuals) on Mt. Kinabalu, Borneo in 1965 and 2007, we show significant wing-length reduction (mean shrinkage of 1.3% per species). Range shifts explain most size re-structuring, due to uphill shifts of relatively small species, especially at high elevations. Overall, mean forewing length shrank by ca. 5%, much of which accounted for by species range boundary shifts (3.9%), followed by within-boundary distribution changes (0.5%), and within-species size shrinkage (0.6%). We conclude that the effects of range shifting predominate, but considering species physiological responses is also important for understanding community size reorganization under climate warming
    corecore