1,976 research outputs found

    Altered distribution of mucosal NK cells during HIV infection.

    Get PDF
    The human gut mucosa is a major site of human immunodeficiency virus (HIV) infection and infection-associated pathogenesis. Increasing evidence shows that natural killer (NK) cells have an important role in control of HIV infection, but the mechanism(s) by which they mediate antiviral activity in the gut is unclear. Here, we show that two distinct subsets of NK cells exist in the gut, one localized to intraepithelial spaces (intraepithelial lymphocytes, IELs) and the other to the lamina propria (LP). The frequency of both subsets of NK cells was reduced in chronic infection, whereas IEL NK cells remained stable in spontaneous controllers with protective killer immunoglobulin-like receptor/human leukocyte antigen genotypes. Both IEL and LP NK cells were significantly expanded in immunological non-responsive patients, who incompletely recovered CD4+ T cells on highly active antiretroviral therapy (HAART). These data suggest that both IEL and LP NK cells may expand in the gut in an effort to compensate for compromised CD4+ T-cell recovery, but that only IEL NK cells may be involved in providing durable control of HIV in the gut

    Russellian Monism and Mental Causation

    Get PDF
    © 2019 Wiley Periodicals, Inc.According to Russellian monism, consciousness is constituted at least partly by quiddities: intrinsic properties that categorically ground dispositional properties described by fundamental physics. If the theory is true, then consciousness and such dispositional properties are closely connected. But how closely? The contingency thesis says that the connection is contingent. For example, on this thesis the dispositional property associated with negative charge might have been categorically grounded by a quiddity that is distinct from the one that actually grounds it. Some argue that Russellian monism entails the contingency thesis and that this makes its consciousness‐constituting quiddities epiphenomenal—a disastrous outcome for a theory that is motivated partly by its prospects for integrating consciousness into physical causation. We consider two versions of that argument, a generic version and an intriguing version developed by Robert J. Howell, which he bases on Jaegwon Kim's well‐known “exclusion argument.” We argue that neither succeeds.Peer reviewe

    Tracking the Trajectory of Functional Humoral Immune Responses Following Acute HIV Infection.

    Get PDF
    Increasing evidence points to a role for antibody-mediated effector functions in preventing and controlling HIV infection. However, less is known about how these antibody effector functions evolve following infection. Moreover, how the humoral immune response is naturally tuned to recruit the antiviral activity of the innate immune system, and the extent to which these functions aid in the control of infection, are poorly understood. Using plasma samples from 10 hyper-acute HIV-infected South African women, identified in Fiebig stage I (the FRESH cohort), systems serology was performed to evaluate the functional and biophysical properties of gp120-, gp41-, and p24- specific antibody responses during the first year of infection. Significant changes were observed in both the functional and biophysical characteristics of the humoral immune response following acute HIV infection. Antibody Fc-functionality increased over the course of infection, with increases in antibody-mediated phagocytosis, NK activation, and complement deposition occurring in an antigen-specific manner. Changes in both antibody subclass and antibody Fc-glycosylation drove the evolution of antibody effector activity, highlighting natural modifications in the humoral immune response that may enable the directed recruitment of the innate immune system to target and control HIV. Moreover, enhanced antibody functionality, particularly gp120-specific polyfunctionality, was tied to improvements in clinical course of infection, supporting a role for functional antibodies in viral control

    Coordinated Fc-effector and neutralization functions in HIV-infected children define a window of opportunity for HIV vaccination

    Get PDF
    OBJECTIVES: Antibody function has been extensively studied in HIV-infected adults but is relatively understudied in children. Emerging data suggests enhanced development of broadly neutralizing antibodies (bNAbs) in children but Fc effector functions in this group are less well defined. Here, we profiled overall antibody function in HIV-infected children. DESIGN: Plasma samples from a cross-sectional study of 50 antiretroviral therapy-naive children (aged 1-11 years) vertically infected with HIV-1 clade A were screened for HIV-specific binding antibody levels and neutralizing and Fc-mediated functions. METHODS: Neutralization breadth was determined against a globally representative panel of 12 viruses. HIV-specific antibody levels were determined using a multiplex assay. Fc-mediated antibody functions measured were antibody-dependent: cellular phagocytosis (ADCP); neutrophil phagocytosis (ADNP); complement deposition (ADCD) and natural killer function (ADNK). RESULTS: All children had HIV gp120-specific antibodies, largely of the IgG1 subtype. Fifty-four percent of the children exhibited more than 50% neutralization breadth, with older children showing significantly broader neutralization activity. Apart from ADCC, observed only in 16% children, other Fc-mediated functions were common (>58% children). Neutralization breadth correlated with Fc-mediated functions suggesting shared determinants of enhanced antibody function exist. CONCLUSIONS: These results are consistent with previous observations that children may develop high levels of neutralization breadth. Furthermore, the striking association between neutralization breadth and Fc effector function suggests that HIV vaccination in children could yield multifunctional antibodies. Paediatric populations may therefore provide an ideal window of opportunity for HIV vaccination strategies

    Personhood, consciousness, and god : how to be a proper pantheist

    Get PDF
    © Springer Nature B.V. 2018In this paper I develop a theory of personhood which leaves open the possibility of construing the universe as a person. If successful, it removes one bar to endorsing pantheism. I do this by examining a rising school of thought on personhood, on which persons, or selves, are understood as identical to episodes of consciousness. Through a critique of this experiential approach to personhood, I develop a theory of self as constituted of qualitative mental contents, but where these contents are also capable of unconscious existence. On this theory, though we can be conscious of our selves, consciousness turns out to be inessential to personhood. This move, I then argue, provides resources for responding to the pantheist’s problem of God’s person.Peer reviewedFinal Accepted Versio

    Discrepancy between Mtb-specific IFN-γ and IgG responses in HIV-positive people with low CD4 counts

    Get PDF
    Background: Tuberculosis (TB) is a leading infectious cause of death worldwide and treating latent TB infection (LTBI) with TB preventative therapy is a global priority. This study aimed to measure interferon gamma (IFN-γ) release assay (IGRA) positivity (the current reference standard for LTBI diagnosis) and Mtb-specific IgG antibodies in otherwise healthy adults without HIV and those living with HIV (PLWH). Methods: One-hundred and eighteen adults (65 without HIV and 53 antiretroviral-naïve PLWH), from a peri-urban setting in KwaZulu-Natal, South Africa were enrolled. IFN-γ released following stimulation with ESAT-6/CFP-10 peptides and plasma IgG antibodies specific for multiple Mtb antigens were measured using the QuantiFERON-TB Gold Plus (QFT) and customized Luminex assays, respectively. The relationships between QFT status, relative concentrations of anti-Mtb IgG, HIV-status, sex, age and CD4 count were analysed. Findings: Older age, male sex and higher CD4 count were independently associated with QFT positivity (p = 0.045, 0.05 and 0.002 respectively). There was no difference in QFT status between people with and without HIV infection (58% and 65% respectively, p = 0.06), but within CD4 count quartiles, people with HIV had higher QFT positivity than people without HIV (p = 0.008 (2nd quartile), <0.0001 (3rd quartile)). Concentrations of Mtb-specific IFN-γ were lowest, and relative concentrations of Mtb-specific IgGs were highest in PLWH in the lowest CD4 quartile. Interpretation: These results suggest that the QFT assay underestimates LTBI among immunosuppressed people with HIV and Mtb-specific IgG may be a useful alternative biomarker for Mtb infection. Further evaluation of how Mtb-specific antibodies can be leveraged to improve LTBI diagnosis is warranted, particularly in HIV-endemic areas. Fundings: NIH, AHRI, SHIP: SA-MRC and SANTHE

    The Iterative Signature Algorithm for the analysis of large scale gene expression data

    Full text link
    We present a new approach for the analysis of genome-wide expression data. Our method is designed to overcome the limitations of traditional techniques, when applied to large-scale data. Rather than alloting each gene to a single cluster, we assign both genes and conditions to context-dependent and potentially overlapping transcription modules. We provide a rigorous definition of a transcription module as the object to be retrieved from the expression data. An efficient algorithm, that searches for the modules encoded in the data by iteratively refining sets of genes and conditions until they match this definition, is established. Each iteration involves a linear map, induced by the normalized expression matrix, followed by the application of a threshold function. We argue that our method is in fact a generalization of Singular Value Decomposition, which corresponds to the special case where no threshold is applied. We show analytically that for noisy expression data our approach leads to better classification due to the implementation of the threshold. This result is confirmed by numerical analyses based on in-silico expression data. We discuss briefly results obtained by applying our algorithm to expression data from the yeast S. cerevisiae.Comment: Latex, 36 pages, 8 figure

    Mucosal Therapy of Multi-Drug Resistant Tuberculosis With IgA and Interferon-γ

    Get PDF
    New evidence has been emerging that antibodies can be protective in various experimental models of tuberculosis. Here, we report on protection against multidrug-resistant Mycobacterium tuberculosis (MDR-TB) infection using a combination of the human monoclonal IgA 2E9 antibody against the alpha-crystallin (Acr, HspX) antigen and mouse interferon-gamma in mice transgenic for the human IgA receptor, CD89. The effect of the combined mucosal IgA and IFN-γ; treatment was strongest (50-fold reduction) when therapy was applied at the time of infection, but a statistically significant reduction of lung bacterial load was observed even when the therapy was initiated once the infection had already been established. The protection involving enhanced phagocytosis and then neutrophil mediated killing of infected cells was IgA isotype mediated, because treatment with an IgG version of 2E9 antibody was not effective in human IgG receptor CD64 transgenic mice. The Acr antigen specificity of IgA antibodies for protection in humans has been indicated by their elevated serum levels in latent tuberculosis unlike the lack of IgA antibodies against the virulence-associated MPT64 antigen. Our results represent the first evidence for potential translation of mucosal immunotherapy for the management of MDR-TB

    A robust, high-throughput assay to determine the phagocytic activity of clinical antibody samples

    Get PDF
    Phagocytosis can be induced via the engagement of Fcγ receptors by antibody-opsonized material. Furthermore, the efficiency of antibody-induced effector functions has been shown to be dramatically modulated by changes in antibody glycosylation. Because infection can modulate antibody glycans, which in turn modulate antibody functions, assays capable of determining the induction of effector functions rather than neutralization or titer provide a valuable opportunity to more fully characterize the quality of the adaptive immune response. Here we describe a robust and high-throughput flow cytometric assay to define the phagocytic activity of antigen-specific antibodies from clinical samples. This assay employs a monocytic cell line that expresses numerous Fc receptors: including inhibitory and activating, and high and low affinity receptors—allowing complex phenotypes to be studied. We demonstrate the adaptability of this high-throughput, flow-based assay to measure antigen-specific antibody-mediated phagocytosis against an array of viruses, including influenza, HIV, and dengue. The phagocytosis assay format further allows for simultaneous analysis of cytokine release, as well as determination of the role of specific Fcγ-receptor subtypes, making it a highly useful system for parsing differences in the ability of clinical and vaccine induced antibody samples to recruit this critical effector function.Neutralizing Antibody Consortium (International AIDS Vaccine Initiative)National Institute of Allergy and Infectious Diseases (U.S.)National Institutes of Health (U.S.) (AI055332)National Institutes of Health (U.S.) (AI080289)Ragon Institute of MGH, MIT and Harvar
    corecore