12 research outputs found
The beginning of a seed: regulatory mechanisms of double fertilization
Weather conditions are widely acknowledged to contribute to the occurrence of congestion on motorway traffic by influencing both traffic supply and traffic demand. To the best of our knowledge, this is the first paper that explicitly integrates supply and demand effects in predicting the influence of adverse weather conditions on the probability of occurrence of congestion. Traffic demand is examined by conducting a stated adaptation experiment, in which changes in travel choices are observed under adverse weather scenarios. Based on these choices, a Panel Mixed Logit model is estimated. Supply effects are taken into account by examining the influence of precipitation on motorway capacity. Based on the Product Limit Method, capacity distribution functions are estimated for dry weather, light rain and heavy rain. With the developed model to integrate the supply and demand effects breakdown probabilities can be calculated for any given traffic demand and capacity. The results show that rainfall leads to a significant increase in the probability of traffic breakdown at bottleneck locations. Interestingly the probability of a breakdown at these bottleneck locations is predicted to be slightly higher in light rain (98.7%) than in heavy rain (95.7%) conditions, which is the result of the higher traffic demand in light rain conditions. Based on the results presented in this paper, it can be recommended to always incorporate both supply and demand effects in the predictions of motorway breakdown probabilities due to adverse weather conditions to improve the validity of the predictions. © 2015 Editorial Board EJTIR. All rights reserved
Mutational Spectrum of the ABCA12 Gene and Genotype-Phenotype Correlation in a Cohort of 64 Patients with Autosomal Recessive Congenital Ichthyosis
Autosomal recessive congenital ichthyosis (ARCI) is a non-syndromic congenital disorder of cornification characterized by abnormal scaling of the skin. The three major phenotypes are lamellar ichthyosis, congenital ichthyosiform erythroderma, and harlequin ichthyosis. ARCI is caused by biallelic mutations in ABCA12, ALOX12B, ALOXE3, CERS3, CYP4F22, NIPAL4, PNPLA1, SDR9C7, SULT2B1, and TGM1. The most severe form of ARCI, harlequin ichthyosis, is caused by mutations in ABCA12. Mutations in this gene can also lead to congenital ichthyosiform erythroderma or lamellar ichthyosis. We present a large cohort of 64 patients affected with ARCI carrying biallelic mutations in ABCA12. Our study comprises 34 novel mutations in ABCA12, expanding the mutational spectrum of ABCA12-associated ARCI up to 217 mutations. Within these we found the possible mutational hotspots c.4541G>A, p.(Arg1514His) and c.4139A>G, p.(Asn1380Ser). A correlation of the phenotype with the effect of the genetic mutation on protein function is demonstrated. Loss-of-function mutations on both alleles generally result in harlequin ichthyosis, whereas biallelic missense mutations mainly lead to CIE or LI
Meta-Analysis of Mutations in ALOX12B or ALOXE3 Identified in a Large Cohort of 224 Patients
The autosomal recessive congenital ichthyoses (ARCI) are a nonsyndromic group of cornification disorders that includes lamellar ichthyosis, congenital ichthyosiform erythroderma, and harlequin ichthyosis. To date mutations in ten genes have been identified to cause ARCI: TGM1, ALOX12B, ALOXE3, NIPAL4, CYP4F22, ABCA12, PNPLA1, CERS3, SDR9C7, and SULT2B1. The main focus of this report is the mutational spectrum of the genes ALOX12B and ALOXE3, which encode the epidermal lipoxygenases arachidonate 12-lipoxygenase, i.e., 12R type (12R-LOX), and the epidermis-type lipoxygenase-3 (eLOX3), respectively. Deficiency of 12R-LOX and eLOX3 disrupts the epidermal barrier function and leads to an abnormal epidermal differentiation. The type and the position of the mutations may influence the ARCI phenotype; most patients present with a mild erythrodermic ichthyosis, and only few individuals show severe erythroderma. To date, 88 pathogenic mutations in ALOX12B and 27 pathogenic mutations in ALOXE3 have been reported in the literature. Here, we presented a large cohort of 224 genetically characterized ARCI patients who carried mutations in these genes. We added 74 novel mutations in ALOX12B and 25 novel mutations in ALOXE3. We investigated the spectrum of mutations in ALOX12B and ALOXE3 in our cohort and additionally in the published mutations, the distribution of these mutations within the gene and gene domains, and potential hotspots and recurrent mutations
The beginning of a seed: regulatory mechanisms of double fertilization
The launch of seed development in flowering plants (angiosperms) is initiated by the process of double fertilization: two male gametes (sperm cells) fuse with two female gametes (egg and central cell) to form the precursor cells of the two major seed components, the embryo and endosperm, respectively. The immobile sperm cells are delivered by the pollen tube towards the ovule harboring the female gametophyte by species-specific pollen tube guidance and attraction mechanisms. After pollen tube burst inside the female gametophyte, the two sperm cells fuse with the egg and central cell initiating seed development. The fertilized central cell forms the endosperm while the fertilized egg cell, the zygote, will form the actual embryo and suspensor. The latter structure connects the embryo with the sporophytic maternal tissues of the developing seed. The underlying mechanisms of double fertilization are tightly regulated to ensure delivery of functional sperm cells and the formation of both, a functional zygote and endosperm. In this review we will discuss the current state of knowledge about the processes of directed pollen tube growth and its communication with the synergid cells resulting in pollen tube burst, the interaction of the four gametes leading to cell fusion and finally discuss mechanisms how flowering plants prevent multiple sperm cell entry (polyspermy) to maximize their reproductive success
Erythrokeratodermia Variabilis-like Phenotype in Patients Carrying ABCA12 Mutations
Erythrokeratodermia variabilis (EKV) is a rare genodermatosis characterized by well-demarcated erythematous patches and hyperkeratotic plaques. EKV is most often transmitted in an autosomal dominant manner. Until recently, only mutations in connexins such as GJB3 (connexin 31), GJB4 (connexin 30.3), and occasionally GJA1 (connexin 43) were known to cause EKV. In recent years, mutations in other genes have been described as rare causes of EKV, including the genes KDSR, KRT83, and TRPM4. Features of the EKV phenotype can also appear with other genodermatoses: for example, in Netherton syndrome, which hampers correct diagnosis. However, in autosomal recessive congenital ichthyosis (ARCI), an EKV phenotype has rarely been described. Here, we report on seven patients who clinically show a clear EKV phenotype, but in whom molecular genetic analysis revealed biallelic mutations in ABCA12, which is why the patients are classified in the ARCI group. Our study indicates that ARCI should be considered as a differential diagnosis in EKV
The Importance of Extended Analysis Using Current Molecular Genetic Methods Based on the Example of a Cohort of 228 Patients with Hereditary Breast and Ovarian Cancer Syndrome
In about 20–30% of all women with breast cancer, an increased number of cases of breast cancer can be observed in their family history. However, currently, only 5–10% of all breast cancer cases can be attributed to a pathogenic gene alteration. Molecular genetic diagnostics underwent enormous development within the last 10 years. Next-generation sequencing approaches allow increasingly extensive analyses resulting in the identification of additional candidate genes. In the present work, the germline molecular diagnostic analysis of a cohort of 228 patients with suspected hereditary breast and ovarian cancer syndrome (HBOC) was evaluated. The 27 pathogenic gene variants initially detected are listed, and their distribution in the high-risk BRCA1 and BRCA2 genes is presented in this study. In ten high-risk patients, in whom, to date, no pathogenic variant could be detected, an extended genetic analysis of previously not considered risk genes was performed. Three variants of uncertain significance and one pathogenic variant could be described. This proves the importance of extended analysis using current molecular genetic methods