50 research outputs found

    Faecalibacterium prausnitzii Skews Human DC to Prime IL10-Producing T Cells Through TLR2/6/JNK Signaling and IL-10, IL-27, CD39, and IDO-1 Induction

    Get PDF
    The human colonic mucosa contains regulatory type 1-like (Tr1-like, i.e., IL-10-secreting and Foxp3-negative) T cells specific for the gut Clostridium Faecalibacterium prausnitzii (F. prausnitzii), which are both decreased in Crohn's disease patients. These data, together with the demonstration, in mice, that colonic regulatory T cells (Treg) induced by Clostridium bacteria are key players in colon homeostasis, support a similar role for F. prausnitzii-specific Treg in the human colon. Here we assessed the mechanisms whereby F. prausnitzii induces human colonic Treg. We demonstrated that F. prausnitzii, but not related Clostridia, skewed human dendritic cells to prime IL-10-secreting T cells. Accordingly, F. prausnitzii induced dendritic cells to express a unique array of potent Tr1/Treg polarizing molecules: IL-10, IL-27, CD39, IDO-1, and PDL-1 and, following TLR4 stimulation, inhibited their up-regulation of costimulation molecules as well as their production of pro-inflammatory cytokines IL-12 (p35 and p40) and TNFα. We further showed that these potent tolerogenic effects relied on F. prausnitzii-induced TLR2/6 triggering, JNK signaling and CD39 ectonucleotidase activity, which was induced by IDO-1 and IL-27. These data, together with the presence of F. prausnitzii-specific Tr1-like Treg in the human colon, point out to dendritic cells polarization by F. prausnitzii as the first described cellular mechanism whereby the microbiota composition may affect human colon homeostasis. Identification of F. prausnitzii-induced mediators involved in Tr1-like Treg induction by dendritic cells opens therapeutic avenues for the treatment of inflammatory bowel diseases

    First Human Model of In Vitro Candida albicans Persistence within Granuloma for the Reliable Study of Host-Fungi Interactions

    Get PDF
    BACKGROUND: The balance between human innate immune system and Candida albicans virulence signaling mechanisms ultimately dictates the outcome of fungal invasiveness and its pathology. To better understand the pathophysiology and to identify fungal virulence-associated factors in the context of persistence in humans, complex models are indispensable. Although fungal virulence factors have been extensively studied in vitro and in vivo using different immune cell subsets and cell lines, it is unclear how C. albicans survives inside complex tissue granulomas. METHODOLOGY/PRINCIPAL FINDING: We developed an original model of in vitro human granuloma, reproducing the natural granulomatous response to C. albicans. Persistent granulomas were obtained when the ratio of phagocytes to fungi was high. This in vitro fungal granuloma mimics natural granulomas, with infected macrophages surrounded by helper and cytotoxic T lymphocytes. A small proportion of granulomas exhibited C. albicans hyphae. Histological and time-lapse analysis showed that C. albicans blastoconidia were located within the granulomas before hyphae formation. Using staining techniques, fungal load calculations, as well as confocal and scanning electron microscopy, we describe the kinetics of fungal granuloma formation. We provide the first direct evidence that C. albicans are not eliminated by immunocompetent cells inside in vitro human granulomas. In fact, after an initial candicidal period, the remaining yeast proliferate and persist under very complex immune responses. CONCLUSIONS/SIGNIFICANCE: Using an original in vitro model of human fungal granuloma, we herein present the evidence that C. albicans persist and grow into immunocompetent granulomatous structures. These results will guide us towards a better understanding of fungal invasiveness and, henceforth, will also help in the development of better strategies for its control in human physiological conditions

    CD4CD8αα Lymphocytes, A Novel Human Regulatory T Cell Subset Induced by Colonic Bacteria and Deficient in Patients with Inflammatory Bowel Disease

    Get PDF
    It has become evident that bacteria in our gut affect health and disease, but less is known about how they do this. Recent studies in mice showed that gut Clostridium bacteria and their metabolites can activate regulatory T cells (Treg) that in turn mediate tolerance to signals that would ordinarily cause inflammation. In this study we identify a subset of human T lymphocytes, designated CD4CD8αα T cells that are present in the surface lining of the colon and in the blood. We demonstrate Treg activity and show these cells to be activated by microbiota; we identify F. prausnitzii, a core Clostridium strain of the human gut microbiota, as a major inducer of these Treg cells. Interestingly, there are fewer F. prausnitzii in individuals suffering from inflammatory bowel disease (IBD), and accordingly the CD4CD8αα T cells are decreased in the blood and gut of patients with IBD. We argue that CD4CD8αα colonic Treg probably help control or prevent IBD. These data open the road to new diagnostic and therapeutic strategies for the management of IBD and provide new tools to address the impact of the intestinal microbiota on the human immune system

    Low Penetrance, Broad Resistance, and Favorable Outcome of Interleukin 12 Receptor β1 Deficiency: Medical and Immunological Implications

    Get PDF
    The clinical phenotype of interleukin 12 receptor β1 chain (IL-12Rβ1) deficiency and the function of human IL-12 in host defense remain largely unknown, due to the small number of patients reported. We now report 41 patients with complete IL-12Rβ1 deficiency from 17 countries. The only opportunistic infections observed, in 34 patients, were of childhood onset and caused by weakly virulent Salmonella or Mycobacteria (Bacille Calmette-Guérin -BCG- and environmental Mycobacteria). Three patients had clinical tuberculosis, one of whom also had salmonellosis. Unlike salmonellosis, mycobacterial infections did not recur. BCG inoculation and BCG disease were both effective against subsequent environmental mycobacteriosis, but not against salmonellosis. Excluding the probands, seven of the 12 affected siblings have remained free of case-definition opportunistic infection. Finally, only five deaths occurred in childhood, and the remaining 36 patients are alive and well. Thus, a diagnosis of IL-12Rβ1 deficiency should be considered in children with opportunistic mycobacteriosis or salmonellosis; healthy siblings of probands and selected cases of tuberculosis should also be investigated. The overall prognosis is good due to broad resistance to infection and the low penetrance and favorable outcome of infections. Unexpectedly, human IL-12 is redundant in protective immunity against most microorganisms other than Mycobacteria and Salmonella. Moreover, IL-12 is redundant for primary immunity to Mycobacteria and Salmonella in many individuals and for secondary immunity to Mycobacteria but not to Salmonella in most

    Foamy Macrophages from Tuberculous Patients' Granulomas Constitute a Nutrient-Rich Reservoir for M. tuberculosis Persistence

    Get PDF
    Tuberculosis (TB) is characterized by a tight interplay between Mycobacterium tuberculosis and host cells within granulomas. These cellular aggregates restrict bacterial spreading, but do not kill all the bacilli, which can persist for years. In-depth investigation of M. tuberculosis interactions with granuloma-specific cell populations are needed to gain insight into mycobacterial persistence, and to better understand the physiopathology of the disease. We have analyzed the formation of foamy macrophages (FMs), a granuloma-specific cell population characterized by its high lipid content, and studied their interaction with the tubercle bacillus. Within our in vitro human granuloma model, M. tuberculosis long chain fatty acids, namely oxygenated mycolic acids (MA), triggered the differentiation of human monocyte-derived macrophages into FMs. In these cells, mycobacteria no longer replicated and switched to a dormant non-replicative state. Electron microscopy observation of M. tuberculosis–infected FMs showed that the mycobacteria-containing phagosomes migrate towards host cell lipid bodies (LB), a process which culminates with the engulfment of the bacillus into the lipid droplets and with the accumulation of lipids within the microbe. Altogether, our results suggest that oxygenated mycolic acids from M. tuberculosis play a crucial role in the differentiation of macrophages into FMs. These cells might constitute a reservoir used by the tubercle bacillus for long-term persistence within its human host, and could provide a relevant model for the screening of new antimicrobials against non-replicating persistent mycobacteria

    Caractérisation moléculaire du granulome mycobactérien

    No full text
    TOULOUSE3-BU Sciences (315552104) / SudocSudocFranceF

    IL-12 et IFN-γ : un axe clé de l’immunité anti-mycobactérienne chez l’homme

    No full text
    Les maladies mycobactériennes communes, la tuberculose, la lèpre, et l’ulcère de Buruli, sont responsables d’une morbidité et d’une mortalité considérables dans le monde. Les autres mycobactéries, comme les souches vaccinales de Calmette et Guérin (BCG) et les mycobactéries environnementales, sont moins virulentes chez l’homme mais peuvent être responsables d’infections sévères si la réponse immunitaire est imparfaite. Chez l’homme, l’étude du syndrome de prédisposition mendélienne aux infections mycobactériennes, a permis d’établir le rôle clé de l’interféron-γ (IFN-γ), mais également de son principal inducteur l’interleukine-12 (IL-12), dans les mécanismes moléculaires de l’immunité anti-mycobactérienne. Le rôle de cet axe dans la vulnérabilité aux infections mycobactériennes communes peut à présent être testé

    Microbiota-specific CD4CD8αα Tregs: role in intestinal immune homeostasis and implications for IBD

    Get PDF
    International audienceIn studies in murine models, active suppression by IL-10-secreting Foxp3 regulatory T cells (Tregs) has emerged as an essential mechanism in colon homeostasis. However, the role of the equivalent subset in humans remains unclear, leading to suggestions that other subsets and/or mechanisms may substitute for Foxp3 Tregs in the maintenance of colon homeostasis. We recently described a new subset of CD4CD8αα T cells reactive to the gut bacterium Faecalibacterium prausnitzii and endowed with regulatory/suppressive functions. This subset is abundant in the healthy colonic mucosa, but less common in that of patients with inflammatory bowel disease (IBD). We discuss here the physiological significance and potential role of these Tregs in preventing inflammation of the gut mucosa and the potential applications of these discoveries for IBD management. DIVERSITY OF PERIPHERALLY DERIVED Tregs (pTregs) CD4 regulatory T cells (Tregs) inhibit inflammatory responses (1). They can be subdivided into natural Tregs, which differentiate in the thymus (tTreg) and peripherally derived Tregs (pTregs), which differentiate in secondary lymphoid organs or tissues (2). These populations differ in terms of their non-redundant roles: tTregs play an essential role in maintaining tolerance toward self-structures, whereas pTregs are involved in the responses to externally delivered antigens or commensal microbes. Furthermore, the tTreg population appears to be stable, whereas that of pTregs may be more labile (3). This functional dichotomy results from differences in differentiation due to exposure to different TCR ligands (self and non-self antigens, respectively) and specific factors (cytokines, route of exposure, and antigen-presenting cells) in contrasting settings (4). The two Treg subsets can also be distinguished on the basis of the presence or absence of constitutive expression of the Foxp3 transcription factor. Constitutive Foxp3 expression and more particularly, the demethylation of a specific region of the Foxp3 locus are characteristic features of tTregs (5). Three main subsets of CD4 pTregs have been described in mice: Foxp3 + CD25 + lymphocytes (3, 6), which are particularly abundant in the colon lamina propria (LP) (7) and two Foxp3 − subsets: the type 1 regulatory T (Tr1) cells and the T helper 3 (Th3) cells. The Tr1 subset secretes IL-10 and TGF-β in the absence of IL-4 and IL-17 (8–10) and is abundant in the small intestine (7). The Th3 subset may also secrete IL-10, but it differs from Tr1 in its expression of membrane-bound TGF-β (11, 12). The Tr1 Tregs are induced in vitro by IL-10 (8–10) and in vivo by TGF-β and IL-27 (9, 13) in the context of diverse immune responses (14) and upon chronic stimulation with antigens in the presence of IL-10 (10). The suppressive action of Tr1 Tregs is essentially IL-10-dependent, but it is also at least partly governed by TGF-β (8, 9). Moreover, the suppressive function of these cells may b

    Human gut microbiota-reactive DP8α regulatory T cells, signature and related emerging functions

    No full text
    International audienceIn mice, microbiota-induced Tregs both maintain intestinal homeostasis and provide resistance to immuno-pathologies in the adult. Identifying their human functional counterpart therefore represents an important goal. We discovered, in the human colonic lamina propria and blood, a FoxP3-negative IL-10-secreting Treg subset, which co-expresses CD4 and CD8α (hence named DP8α) and displays a TCR-reactivity against Faecalibacterium prausnitzii , indicating a role for this symbiotic bacterium in their induction. Moreover, supporting their role in intestinal homeostasis, we previously reported both their drastic decrease in IBD patients and their protective role in vivo against intestinal inflammation, in mice. Here, we aimed at identifying the genomic, phenotypic and functional signatures of these microbiota-induced Tregs, towards delineating their physiological role(s) and clinical potential. Human F. prausnitzii -reactive DP8α Treg clones were derived from both the colonic lamina propria and blood. RNA-sequencing, flow cytometry and functional assays were performed to characterize their response upon activation and compare them to donor- and tissue-matched FoxP3 + Treg clones. DP8α Tregs exhibited a unique mixed Tr1-like/cytotoxic CD4 + T cell-profile and shared the RORγt and MAF master genes with mouse gut microbiota-induced FoxP3 + Tregs. We revealed their potent cytotoxic, chemotactic and IgA-promoting abilities, which were confirmed using in vitro assays. Therefore, besides their induction by a Clostridium bacterium, DP8α Tregs also partake master genes with mouse microbiota-induced Tregs. The present identification of their complete signature and novel functional properties, should be key in delineating the in vivo roles and therapeutic applications of these unique human microbiota-induced Tregs through their study in pathological contexts, particularly in inflammatory bowel diseases

    Immunotherapy With Antiprogrammed Cell Death 1 Antibody Improves Outcome in a Mouse Model of Spinal Cord Injury Followed by Staphylococcus aureus Pneumonia

    No full text
    International audienceObjectives: In patients with spinal cord injury, spinal cord injury-immune depression syndrome induces pneumonia. We aimed to develop a new spinal cord injury-immune depression syndrome mouse model and to test antiprogrammed cell death 1 therapy. Design: Experimental study. Setting: Research laboratory. Subjects: RjOrl: SWISS and BALB/cJ mice. Interventions: Mouse model of spinal cord injury-immune depression syndrome followed by a methicillin-susceptible Staphylococcus aureus pneumonia. Lung injuries were assessed by histologic analysis. Membrane markers and intracytoplasmic cytokines were assessed by flow cytometry. Cytokine production was assessed by quantitative polymerase chain reaction (messenger RNA) and enzyme-linked immunosorbent assay (protein). Animals were treated with blocking antiprogrammed cell death 1 antibodies (intraperitoneal injection). Measurements and Main Results: Spinal cord injury mice were more susceptible to methicillin-susceptible S. aureus pneumonia (increased mortality rate). An early inflammatory response was observed in spinal cord injury mice characterized in lungs by a decreased percentage of aerated tissue, an increased production of proinflammatory cytokines (tumor necrosis factor-α). In spleen, an increased expression of major histocompatibility complex class II molecules on dendritic cells, and an increased production of pro-inflammatory cytokines (interleukin-12, interferon-γ) was observed. Following this pulmonary and systemic inflammation, spinal cord injury-immune depression syndrome was observed in spleens as acknowledged by a decrease of spleen's weight, a lymphopenia, a decrease of major histocompatibility complex class II expression on dendritic cells. An increase of interleukin-10 production and the increase of a cell exhaustion marker expression, programmed cell death 1 receptor on T-cell were also observed. Blockade of programmed cell death 1 molecules, improved survival of spinal cord injury infected mice and enhanced interferon-γ production by natural killer T cells as well as number of viable CD4 + T cells. Conclusions: This model of spinal cord injury in mice mimics a clinical scenario rendering animals prone to a secondary pneumonia. We show for the first time an acute T-cell exhaustion-like phenomenon following an initial inflammatory response. Finally, inhibition of exhaustion pathway should be considered as a new therapeutic option to overcome spinal cord injury-immune depression syndrome and to decrease the rate of nosocomial pneumonia. (Crit Care Med 2019; 47:e28-e35) Key Words: brain injury; immunosuppression; immunotherapy; programmed cell death 1 receptor; spinal cord injury N osocomial infections are independent risk factors for poor neurologic outcome after motor complete spinal cord injury (SCI) (1). SCI induces a severe initial systemic inflammatory response followed by an intense period of immunosuppression which is recognized as an independent risk factor for infection (1, 2). Studies in human and rodent SCI models have already investigated the specifi
    corecore