254 research outputs found

    Development and validation of a luminescence-based, medium-throughput assay for drug screening in Schistosoma mansoni

    Get PDF
    Schistosomiasis, one of the world's greatest neglected tropical diseases, is responsible for over 280,000 human deaths per annum. Praziquantel, developed in the 1970s, has high efficacy, excellent tolerability, few and transient side effects, simple administration procedures and competitive cost and it is currently the only recommended drug for treatment of human schistosomiasis. The use of a single drug to treat a population of over 200 million infected people appears particularly alarming when considering the threat of drug resistance. Quantitative, objective and validated methods for the screening of compound collections are needed for the discovery of novel anti-schistosomal drugs. METHODOLOGY/PRINCIPAL FINDINGS: The present work describes the development and validation of a luminescence-based, medium-throughput assay for the detection of schistosomula viability through quantitation of ATP, a good indicator of metabolically active cells in culture. This validated method is demonstrated to be fast, highly reliable, sensitive and automation-friendly. The optimized assay was used for the screening of a small compound library on S. mansoni schistosomula, showing that the proposed method is suitable for a medium-throughput semi-automated screening. Interestingly, the pilot screening identified hits previously reported to have some anti-parasitic activity, further supporting the validity of this assay for anthelminthic drug discovery. CONCLUSIONS: The developed and validated schistosomula viability luminescence-based assay was shown to be successful and suitable for the identification of novel compounds potentially exploitable in future schistosomiasis therapies

    Synthesis and anti-hepatitis C virus activity of novel ethyl 1H-indole-3-carboxylates in vitro.

    Get PDF
    A series of ethyl 1H-indole-3-carboxylates 9a(1)(-)(6) and 9b(1)(-)(2) were prepared and evaluated in Huh-7.5 cells. Most of the compounds exhibited anti-hepatitis C virus (HCV) activities at low concentration. The selectivity indices of inhibition on entry and replication of compounds 9a(2) (>10; >16.7) and 9b(1) (>6.25; >16.7) were higher than those of the other evaluated compounds, including the lead compound Arbidol (ARB, 6; 15). Moreover, the selective index of inhibition on entry of compound 9a(3) (>6.25) was higher than that of ARB (6). Of these three initial hits, compound 9a(2) was the most poten

    The Saccharomyces cerevisiae OXA1 gene is required for the correct assembly of cytochrome c oxidase and oligomycin-sensitive ATP synthase

    Get PDF
    AbstractThe nuclear gene OXA1 was first isolated in Saccharomyces cerevisiae and found to be required at a post-translational step in cytochrome c oxidase biogenesis, probably at the level of assembly. Mutations in OXA1 lead to a complete respiratory deficiency. The protein Oxa1p is conserved through evolution and a human homolog has been isolated by functional complementation of a yeast oxa1− mutant. In order to further our understanding of the role of Oxa1p, we have constructed two yeast strains in which the OXA1 open reading frame was almost totally deleted. Cytochrome spectra and enzymatic activity measurements show the absence of heme aa3 and of a cytochrome c oxido-reductase activity and dramatic decrease of the oligomycin sensitive ATPase activity. Analysis of the respiratory complexes in non-denaturing gels reveals that Oxa1p is necessary for the correct assembly of the cytochrome c oxidase and the ATP synthase complex

    Initial characterisation of commercially available ELISA tests and the immune response of the clinically correlated SARS-CoV-2 biobank "SERO-BL-COVID-19" collected during the pandemic onset in Switzerland

    Get PDF
    Background To accurately measure seroprevalance in the population, both the expected immune response as well as the assay performances have to be well characterised. Here, we describe the collection and initial characterisation of a blood and saliva biobank obtained after the initial peak of the SARS-CoV-2 pandemic in Switzerland.Methods Two laboratory ELISAs measuring IgA & IgG (Euroimmun), and IgM & IgG (Epitope Diagnostics) were used to characterise the biobank collected from 349 re- and convalescent patients from the canton of Basel-Landschaft.Findings The antibody response in terms of recognized epitopes is diverse, especially in oligosymptomatic patients, while the average strength of the antibody response of the population does correlate with the severity of the disease at each time point.Interpretation The diverse immune response presents a challenge when conducting epidemiological studies as the used assays only detect ∼90% of the oligosymptomatic cases. This problem cannot be rectified by using more sensitive assay setting as they concomitantly reduce specificity.Funding Funding was obtained from the "Amt für Gesundheit" of the canton Basel-Landschaft, Switzerland.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis study was sponsored by Jurg Sommer, head of the Amt fur Gesundheit, and the logistics of the sample collection were provided by the crisis staff and the civil protection service of the canton Basel-Landschaft.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This study is part of the project COVID-19 in Baselland Investigation and Validation of Serological Diagnostic Assays and Epidemiological Study of Sars-CoV-2 specific Antibody Responses (SERO-BL-COVID-19) approved by the ethics board Ethikkommission Nordwest- und Zentralschweiz (EKNZ), Hebelstrasse 53, 4056 Basel representative of Swissethics under the number (2020-00816).All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData are available upon reques

    Cell Clones Selected from the Huh7 Human Hepatoma Cell Line Support Efficient Replication of a Subgenomic GB Virus B Replicon

    No full text
    Tamarins (Saguinus species) infected by GB virus B (GBV-B) have recently been proposed as an acceptable surrogate model for hepatitis C virus (HCV) infection. The availability of infectious genomic molecular clones of both viruses will permit chimeric constructs to be tested for viability in animals. Studies in cells with parental and chimeric constructs would also be very useful for both basic research and drug discovery. For this purpose, a convenient host cell type supporting replication of in vitro-transcribed GBV-B RNA should be identified. We constructed a GBV-B subgenomic selectable replicon based on the sequence of a genomic molecular clone proved to sustain infection in tamarins. The corresponding in vitro-transcribed RNA was used to transfect the Huh7 human hepatoma cell line, and intracellular replication of transfected RNA was shown to occur, even though in a small percentage of transfected cells, giving rise to antibiotic-resistant clones. Sequence analysis of GBV-B RNA from some of those clones showed no adaptive mutations with respect to the input sequence, whereas the host cells sustained higher GBV-B RNA replication than the original Huh7 cells. The enhancement of replication depending on host cell was shown to be a feature common to the majority of clones selected. The replication of GBV-B subgenomic RNA was susceptible to inhibition by known inhibitors of HCV to a level similar to that of HCV subgenomic RNA

    Vitamin B12 ameliorates the phenotype of a mouse model of DiGeorge syndrome

    No full text
    Pathological conditions caused by reduced dosage of a gene, such as gene haploinsufficiency, can potentially be reverted by enhancing the expression of the functional allele. In practice, low specificity of therapeutic agents, or their toxicity reduces their clinical applicability. Here, we have used a high throughput screening (HTS) approach to identify molecules capable of increasing the expression of the gene Tbx1, which is involved in one of the most common gene haploinsufficiency syndromes, the 22q11.2 deletion syndrome. Surprisingly, we found that one of the two compounds identified by the HTS is the vitamin B12. Validation in a mouse model demonstrated that vitamin B12 treatment enhances Tbx1 gene expression and partially rescues the haploinsufficiency phenotype. These results lay the basis for preclinical and clinical studies to establish the effectiveness of this drug in the human syndrome
    • …
    corecore