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Abstract

Background

Schistosomiasis, one of the world’s greatest neglected tropical diseases, is responsible for

over 280,000 human deaths per annum. Praziquantel, developed in the 1970s, has high ef-

ficacy, excellent tolerability, few and transient side effects, simple administration proce-

dures and competitive cost and it is currently the only recommended drug for treatment of

human schistosomiasis. The use of a single drug to treat a population of over 200 million in-

fected people appears particularly alarming when considering the threat of drug resistance.

Quantitative, objective and validated methods for the screening of compound collections

are needed for the discovery of novel anti-schistosomal drugs.

Methodology/Principal Findings

The present work describes the development and validation of a luminescence-based,

medium-throughput assay for the detection of schistosomula viability through quantitation

of ATP, a good indicator of metabolically active cells in culture. This validated method is

demonstrated to be fast, highly reliable, sensitive and automation-friendly. The optimized

assay was used for the screening of a small compound library on S. mansoni schistoso-
mula, showing that the proposed method is suitable for a medium-throughput semi-

automated screening. Interestingly, the pilot screening identified hits previously reported to

have some anti-parasitic activity, further supporting the validity of this assay for anthel-

minthic drug discovery.
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Conclusions

The developed and validated schistosomula viability luminescence-based assay was

shown to be successful and suitable for the identification of novel compounds potentially

exploitable in future schistosomiasis therapies.

Author Summary

Schistosomiasis, one of the world’s greatest human neglected tropical diseases, is caused
by a parasitic flatworm trematode of the genus Schistosoma. Among human parasitic dis-
eases, schistosomiasis ranks second behind malaria in terms of socio-economic and public
health importance in tropical and subtropical areas. More than 200 million people are cur-
rently infected in 77 countries, 85% of whom live in sub-Saharian Africa. To date no vac-
cine is available against schistosomiasis. As chemotherapy relies on a single drug,
praziquantel, many initiatives have been promoted aiming to search for novel anti-schisto-
somal drugs that can represent a valid alternative to the current treatment or could be
used in case of emerging resistance. Quantitative, objective and validated methods for
compound collections screening are needed for the discovery of novel anti-schistosomal
drugs. Here, we report the development and validation of a medium-throughput, lumines-
cence-based assay for assessing viability at the schistosomulum stage of the human para-
site S. mansoni. Our methodology enables a simple, reproducible, highly sensitive and
objective quantitation of parasite viability. It is also automation compatible and enables
the screening of compound collections thus hopefully contributing to the discovery of
novel therapeutic strategies against schistosomiasis.

Introduction
Parasitic flatworm trematodes or flukes of the genus Schistosoma cause schistosomiasis, one of
the world’s greatest neglected tropical diseases. The three main species infecting humans, S.
mansoni, S. haematobium and S. japonicum, can penetrate intact skin upon contact with water
contaminated with parasite larvae. The World Health Organization has listed schistosomiasis
as an illness for which new therapies are urgently needed [1]. There are over 200 million people
living in the endemic areas of 77 countries worldwide, representing a major health and eco-
nomic burden in tropical and developing nations [2, 3].

To date, no vaccine is available against schistosomiasis, so that treatment and most of con-
trol initiatives rely on the long-term application of a single drug, praziquantel (PZQ). PZQ has
high efficacy, excellent tolerability, few and transient side effects, ease of distribution and com-
petitive cost. However, the use of PZQ is limited by its stage-specific activity [4–6], since it is
active on adult parasites (6–7 weeks and over) and it has minimal activity against juvenile
worms (1–5 weeks old). The latter drawback can partially explain the low cure rates in high
transmission areas where patients are likely to harbor juvenile and adult parasites concurrently
[7]. Furthermore, the use of a single drug to treat a population of over 200 million infected peo-
ple and over 700 million people at risk world-wide, appears particularly worrisome when con-
sidering the threat of drug resistance. Alarmingly, it is possible to induce resistance of S.
mansoni and S. japonicum to PZQ in mice under laboratory conditions. In addition, resistance
or reduced susceptibility to PZQ in field isolates of S. mansoni has been sporadically reported
[8–12].
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For all the above reasons, the search for new schistosomicidal agents represents today a
compelling priority [13]. Modern drug discovery pipelines employ target-based screens, using
in vitro assays of individual molecules and/or phenotypic screens of entire organisms. Similar-
ly, efforts have been initiated towards the development of bioassays for high throughput
screening (HTS) of compound libraries [14, 15] and for automated high content phenotypic
screens (HCS) for schistosomiasis [16–19].

In this work, we report the development and validation of a medium-throughput, lumines-
cence-based assay for the detection of schistosomula viability. This method is automation com-
patible and enables the screening of compound collections on schistosomula, thus hopefully
contributing to the development of novel therapeutic strategies against schistosomiasis.

Materials and Methods

Materials
Auranofin, gambogic acid (GA), disulfiram, menadione, oltipraz, parthenolide, plumbagin
from Plumbago indica, PZQ, thonzonium bromide, sanguinarine chloride hydrate, dimethyl
sulphoxide (DMSO), percoll and fetal bovine serum (FBS) were from Sigma-Aldrich. The Ro
15–5458 compound was a kind gift from Dr H. Stohler (Hoffman-La Roche, Basel, Switzer-
land) and oxamniquine was provided by Pfizer, London. Drugs were dissolved in DMSO to ob-
tain stock solutions at 10 mM and were then diluted into culture medium. CellTiter-Glo
(CTG) reagent, used in the schistosomula viability luminescence-based assay, and CellTox
green dye, used in the schistosomula staining, were from Promega. BioWhittaker Dulbecco-
Modified Eagle’s Medium (DMEM) lacking phenol red and containing 4500 mg/l glucose, 1
mMHepes pH 6.98–7.30, 2 mM L-glutamine, 1x antibiotic-antimycotic reagent (Life Technol-
ogies) and 10% heat inactivated FBS, was used as tissue culture medium for schistosomula.
Adult worms were cultured in BioWhittaker DMEM containing 4500 mg/l glucose, 2 mM L-
glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin, 0.5 μg/ml amphothericin B and 10%
heat inactivated FBS.

Methods
Ethics statement. All animals were subjected to experimental protocols as reviewed and ap-
proved by the Public Veterinary Health Department of the Italian Ministry of Health (Rome,
Italy) (Authorization N. 25/2014-PR), according to the ethical and safety rules and guidelines
for the use of animals in biomedical research provided by the relevant Italian laws and Europe-
an Union’s directives.

Maintenance of the S. mansoni life cycle. A Puerto Rican strain of S. mansoni was main-
tained by passage through the intermediate snail host Biomphalaria glabrata and ICR (CD-1)
outbred female mice (Harlan Laboratories) as definitive host. Cercariae were shed by infected
snails placed under direct light for 1–2 hours. The cercarial suspension was collected, placed on
ice and used for the preparation of schistosomula. Adult parasites were harvested by reverse
perfusion of the hepatic portal system of infected mice previously euthanized with intra-perito-
neal injections of Tiletamine/Zolazepam (800 mg/kg) and Xylazine (100 mg/kg).

Animal infection with S. mansoni. Female ICR (CD-1) outbred 4–7 weeks old mice (Har-
lan Laboratories) were housed under controlled conditions (22°C; 65% relative humidity; 12/
12 hours light/dark cycle; standard food and water ad libitum). Mice were infected transcuta-
neously with approximately 80 (mixed sex) or 200 (single sex) S. mansoni cercariae, for life
cycle maintenance and adult parasites production, respectively.

Preparation of schistosomula for compound screening. Cercariae were shed from infected
snails and subsequently converted to schistosomula by mechanical transformation using an
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optimized version of the protocol of Brink et al. [20], previously described by Protasio et al.
[21]. Briefly, the cercaria6l suspension (approximately 50,000 cercariae) was placed in a 40 ml
glass tube on ice for 0 minutes in order to reduce parasite motility. Tail detachment was ob-
tained by shaking cercariae vigorously for approximately 30 seconds on a vortex mixer before
passing them 10–12 times through a 22G syringe needle. Next, schistosomula were purified
from cercarial tails by centrifugation on a 70% Percoll gradient (starting density 1.13 g/ml). Fi-
nally, schistosomula were washed twice with DMEM complete medium lacking FBS and mi-
croscope examination was used to assess the quantity and quality of purified organisms (less
than 1% tails). Schistosomula were cultured in DMEM complete tissue culture medium at 37°C
and 5% CO2 for 24 hours prior to drug treatment. Schistosomula were plated into flat-bottom
384-well black tissue culture treated plates (PN: 781086, Greiner Bio-ONE, AU) for
compound assays.

Screening of compounds and bioassay setting. A compound collection of 1,280 molecules
comprising drugs approved by FDA, EMA and other agencies (Prestwick Chemicals, France)
was tested according to the following procedure. Compounds dissolved in DMSO, DMSO alone
(low control) and GA (high control) were transferred to 384-well, black, tissue culture treated
plates using the acoustic droplet ejection technology (ATS-100, EDC Biosystems, USA) to reach
a concentration of 10 μM in the final assay volume. A suspension of schistosomula in complete
DMEMmedium was transferred to assay plates with a multidrop dispenser (Thermo Fisher,
USA) in order to have a defined number of schistosomula per well in a final volume of 30 μl.
After 24 hours incubation at 37°C and 5% CO2, a volume of 30 μl of CTG reagent (Promega,
USA) was added resulting in cell lysis and generation of a luminescence signal proportional to
the amount of ATP present in the well. Sample luminescence levels (proportional to ATP
levels) were detected 30 minutes after CTG addition and quantified as RLU (Relative Lumines-
cence Unit) by a charge-coupled device (CCD)-based detector (ViewLux, PerkinElmer USA).

Staining of schistosomula with the CellTox green dye and confocal laser scanning mi-
croscopy. Schistosomula were incubated with an equal volume of CTG reagent containing a
membrane-impermeant DNA-binding dye, CellTox green (Promega) (2x final concentration),
prepared as suggested in the manufacturer’s protocol. Schistosomula were stained for 30 min-
utes at room temperature and observed with a laser scanning confocal microscope, TCS SP5
(Leica Microsystems, Mannheim) using a 40x (NA = 1.25) oil-immersion lens with optical pin-
hole at 1AU. For bright field light and fluorescence images Argon laser at 488 nm was used as
excitation source. Confocal Z-stacks were collected at 0.5 μm intervals to a total optical depth
of 22 μm. Confocal images were processed with Volocity software (Improvision, Perkin Elmer)
for image rendering and representation of x/y view. Images for direct comparison were collect-
ed under same parameters and representative images were chosen. Schistosomula treated with
DMSO and incubated with the CellTox green dye without CTG reagent were observed with an
Olympus AX70 fluorescence microscope and images were recorded with the XM10 CCD-cam-
era (Olympus) and analysed with the Olympus cellSens standard Image software. Images were
processed by Adobe Photoshop software.

Confirmation of hit compounds. Additional amounts of hit molecules were purchased
from Sigma-Aldrich and quality controlled by liquid chromatography-mass spectrometry (LC-
MS). Each compound was serially diluted in DMSO and transferred to assay plates in order to
produce a concentration range between 40 nM and 50 μM in the final assay volume. The schis-
tosomula viability by luminescence readout was assessed as described above.

Schistosomula viability by fluorescence microscopy. The assay was carried out according
to Peak et al. [15]. Briefly, schistosomula were treated in microtiter plates for 24 hours with
DMSO or GA and then washed three times using DMEM to remove test compounds and cul-
ture media supplements. Finally, they were stained with propidium iodide (PI) and fluorescein
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diacetate (FDA) at the final concentration of 2.0 μg/ml and 0.5 μg/ml, respectively. The micro-
titer plates, containing fluorescently labeled parasites, were subsequently analyzed by the Acu-
men explorer (TTP Labtech, UK) plate based cytometer for the simultaneous detection of PI
(544 nm excitation/620 nm emission) and FDA (485 nm excitation/520 nm emission). Image
analysis was carried out with the Acumen explorer software.

In vitro studies with S. mansoni adult worms. Male worms were recovered from mice in-
fected, only with male cercariae, by perfusion of mesenteric veins from 8 weeks after infection
and cultured in DMEM complete tissue culture medium at 37°C in a 5% CO2 atmosphere. For
all treatments, parasites were placed overnight in the presence of the drug (10 μM) and the fol-
lowing day they were washed and then cultured in 3 ml of DMEM complete medium for up to
5 days.

Worm status was checked on days 1, 2, 3 and 5 using a stereomicroscope and viability was
recorded considering phenotypic changes such as loss of mobility, tegumental damages and
dark appearance. Images from each treatment were captured using a stereomicroscope Leica
MZ12 and a digital camera Leica D500 controlled by Leica Firecam software (version 1.7.1).

For adult worms, we converted the type and number of phenotypic responses recorded
manually into a ‘severity score’ ranging from 0 (severely compromised) to 3 (no effect). The
following phenotype scoring criteria were used: 3 = worms attached, good movements, clear;
2 = some movements, dark, some tegumental damages; 1 = Sick, little movements, dark, tegu-
mental damages; 0 = Dead. For each sample the following formula was used:X

ðworm scoresÞ
number of worms

The data are expressed as % severity score (viability) relative to DMSO. All tests were repeated
at least three times.

Data handling and statistical analysis. ATP signal percentage normalization (% live para-
sites) was calculated using the following equation:

% live parasites ¼ 100
sample average�medium average
DMSO average�medium average

� �

The PI and FDA signals percentage normalization (% death parasites and live parasites respec-
tively) were calculated using the following equations:

% death parasites ¼ 100 1� sample average�GA 50 mM average
DMSO average�GA 50 mM average

� �

% live parasites ¼ 100
sample average�GA 50 mM average
DMSO average�GA 50 mM average

� �

Data handling and statistical analysis were carried out using the GraphPad Prism software
(GraphPad, USA).

Results

ATP quantitation correlates with the number of schistosomula
In an attempt to establish a correlation between the number of schistosomula and the ATP sig-
nal, serial dilutions of parasites were cultured in 384-well plates for 24 hours. We found the
ATP quantitation in these samples to be in strong correlation with the parasite numbers
(Fig. 1). This correlation was linear in the range between 5 and 200 schistosomula per well. The
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“hook effect” that was observed in cultures with more than 200 schistosomula per well can be
possibly explained by reduced efficiency in the lysis of parasites, a prerequisite for ATP detec-
tion, and/or the parasite themselves being less vital due to the limited space and nutrients with-
in the 384-well volume. Considering that schistosomula production is a rather labor-intensive
process, and according to the limits of the linear range of ATP quantitation, the amount of 100
parasites per well was regarded as the most suitable for the viability assay. In fact, even though
50 parasites per well might be considered a suitable number, the chosen density was preferred
in order to obtain a robust readout for single (no replicas) library screening.

Although the ATP luminescent signal was shown to linearly correlate with the parasite
number, one could argue that the number of parasites may change during the assay incubation.
However, the parasites are not replicating within the cultures and are not disintegrating upon
death. In order to determine the correlation between ATP luminescent signal and viability of a
whole organism, such as the schistosomulum, GA (positive control) and other selected schisto-
somicidal compounds i.e. auranofin, oltipraz, oxamniquine, plumbagin, Ro 15–5458 and PZQ,
known to be effective on the larval stage of parasites and/or on adult worms were assayed [14,
15, 22, 23].

ATP quantitation correlates with schistosomula viability
GA is a natural product that is known to induce apoptosis and cell cycle arrest at the G2/M
phase in mammalian cells [24]. It was previously shown that 10 μMGA is also able to kill in
vitro-cultured schistosomula after 24 hours incubation [15]. Serial dilutions of GA ranging
from 40 nM to 50 μMwere delivered to in vitro-cultured parasites and incubated for 24 hours.
In order to better characterize the impact of parasite numbers on the ATP quantitation with a
known toxic compound, a variable number of schistosomula ranging from 25 up to 200 para-
sites/well was used (Fig. 2). In accordance with previous studies, treatment with GA led to a
dose response curve having a LD50 comprised between 2.30–3.52 μM. In addition, samples

Figure 1. ATP quantitation correlates with the number of schistosomula. Correlation between the
number of schistosomula (X-axis, logarithmic scale) and the ATP signals (Y-axis, linear scale). A semi-log
plot was used to better visualize the data; a linear correlation between schistosomula numbers and ATP
signals is represented by the portion of curve comprised between dotted vertical lines. The LLoQ (Lower Limit
of Quantification) was defined as a signal greater than three times the background signal. The ULoQ (Upper
Limit of Quantification) was defined as the highest signal lying on the linear correlation. RLU = Relative
Luminescent Units.

doi:10.1371/journal.pntd.0003484.g001
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treated with high GA concentrations recapitulated the no-schistosomula controls average sig-
nal, proving that the assay is indeed able to detect the parasite death. Notably, while parasite
numbers, as expected, did not influence the potency of the GA the RLU values correlate with
the number of parasites (Fig. 2).

Importantly, to investigate the penetration of CTG reagent and its effect on schistosomula
in the ATP assay, parasites treated with DMSO were incubated with the membrane-imper-
meant fluorogenic DNA-binding dye, CellTox green, previously added to the CTG reagent.
Confocal laser fluorescent microscopy images showed robust penetration of the CTG reagent.
Importantly, the bright field light images clearly demonstrated that the CTG reagent is not de-
stroying the schistosomula and that the overall integrity of parasites is preserved (Fig. 3) sug-
gesting that the ATP quantitation reflects the overall metabolic state of the parasites.
Schistosomula incubated with the CellTox green dye without the CTG reagent, as expected, did
not show any staining (S1 Fig.).

Next, to further investigate the value of the ATP quantitation as a mean to determine schis-
tosomula viability serial dilutions of other well known schistosomicidal compounds, ranging
from 40 nM to 50 μM, were delivered to in vitro-cultured parasites (100 schistosomula/well)
and assayed using 24 and 72 hours readouts. As shown in Fig. 4, auranofin, oltipraz, plumbagin
and to a minor extent Ro 15–5458 impair schistosomula viability, while oxamniquine and PZQ
have no effect on parasite survival. Among the active compounds, in particular with auranofin
and oltipraz, a slight increase in potency was observed at 72 hours. However, at compound li-
brary screening concentration (10 μM) all the active compounds would have been scored as
positive at 24 hours. This incubation time is particularly suited for an HTS due to limited medi-
um evaporation and reduced compound degradation. The results indicate that by using the
ATP quantitation the activity of all compounds with the exception of PZQ and oxamniquine
were detected. PZQ and oxamniquine in vitro do not induce death of larval stages at day 1
and 3 [14].

Figure 2. ATP luminescent signal correlates with schistosomula viability. Schistosomula ranging from
25–200 were incubated with serial dilutions of GA and ATP luminescence signals were measured. Raw data
(RLU) for each concentration (n = 5) are reported on the y-axis. The error bars represent the standard error.
The table reports the calculated LD50 at different parasite concentrations.

doi:10.1371/journal.pntd.0003484.g002
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Figure 3. Robust penetration of the CTG reagent with preservation of the overall schistosomula morphology. Representative fluorescence (A), bright
field (B) and merge (C) confocal laser microscopy images of schistosomula treated with DMSO and incubated with CTG and the membrane-impermeant
DNA dye CellTox green are shown. Scale bar = 25 μm.

doi:10.1371/journal.pntd.0003484.g003

Figure 4. ATP quantitation to assess schistosomula survival with known anti-schistosomal drugs. Schistosomula (100/well) were incubated in
triplicate with serial dilutions of the indicated compounds. Data evaluated at 24 and 72 hours post treatment are normalized between 50 μMGA-treated
control (0% survival) and DMSO treated schistosomula (100% survival) at each time point. The error bars represent the standard error.

doi:10.1371/journal.pntd.0003484.g004
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ATP quantitation is a more robust assay than fluorescence-based
microscopy
We have so far demonstrated that the ATP quantitation methodology can be applied in a via-
bility screening of schistosomula. Thus, this simple and fast detection technology could repre-
sent a valid alternative to fluorescence-based microscopy bioassays. Recently, fluorescein
diacetate (FDA) and propidium iodide (PI) have been successfully used to detect and quantify
the fluorescent signal of living and dead schistosomula, respectively [15]. In order to verify the
equivalence of the two approaches, a head to head comparison of both methodologies was car-
ried out. To this aim, serial dilutions of GA were titrated against schistosomula in vitro. The
fluorescence-based viability assay was carried out by staining schistosomula with both PI and
FDA as previously reported [15]. As shown in Fig. 5, the GA potency, determined by the two
methods, is comparable and calculated to be 2.32 μM and 3.5 μM for the ATP and PI/FDA as-
says, respectively. With regard to sample reproducibility, the ATP quantitation was found to be
superior, showing smaller error bars, especially at high GA concentrations. Also, the ATP test
has better fitting properties, such as a narrower 95% confidence interval (Fig. 5, dotted lines)
and a correlation coefficient r2 of 0.971 versus 0.8572 of the PI and 0.9235 of FDA.

Screening of approved drugs
Following the preliminary assessments described so far, a set of 1,280 drugs approved for
human use were tested in this assay. The use of this library offers two major advantages: it pro-
vides an increased chance to find hit compounds since it is a collection of cell-active molecules
and possibly allows the repurposing of existing drugs. All compounds were screened at the

Figure 5. PI and FDA uptake correlates with schistosomula survival. Schistosomula were incubated with
serial dilutions of GA and PI and FDA fluorescence signals in treated schistosomula were measured. Left
axis: FDA raw data for each concentration (n = 5) normalized between 50 μMGA-treated control (0%
survival) and DMSO treated schistosomula (100% survival). Right axis: PI raw data for each concentration (n
= 5) normalized between 50 μMGA-treated control (100% death) and DMSO treated schistosomula (0%
death). The error bars represent the standard error, while the dotted lines are the 95% confidence interval of
the fitted sigmoid curve. The calculated LD50 was 3.5 μM. The percentage of live and dead parasites,
calculated as described in Materials and Methods, are shown.

doi:10.1371/journal.pntd.0003484.g005
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concentration of 10 μMwith 100 schistomula/well and the effect of each compound was calcu-
lated by normalizing the raw data between 0% toxicity (DMSO-treated controls) and 100% tox-
icity (10 μMGA-treated controls). DMSO- and GA-treated parasites were also used to
determine the “Z’-factor”, a dimensionless, simple statistical characteristic ranging from-1 to
1 [25]. Values comprised between 1> Z’� 0.5 indicate an excellent assay [25]. In our screen-
ing the Z’ value resulted greater than 0.5 for all the microplates tested, thus confirming the high
quality of the readout. Considering the relatively small number of molecules tested and the bi-
ased collection composition, a statistic approach for the identification of the hit compounds
was not envisaged. Moreover, since the drug concentration (10 μM) was at the upper limit of
the range commonly accepted for a screening, it was established that hit molecules should have
their predicted LD50 at a concentration lower than the tested one; thus the threshold was set to
70% toxicity at 10 μM. Five molecules (disulfiram, menadione, parthenolide, sanguinarine
chloride hydrate and thonzonium bromide) proved to be active against schistosomula after 24
hours incubation. In order to confirm the initial findings, hit compound potencies were deter-
mined in a dose response manner and their LD50 are reported in Table 1. Of all, only one com-
pound, disulfiram, resulted inactive. The screening was replicated to assess its robustness and
false positive/negative rates. Within the second set of results, disulfiram and parthenolide were
not identified as active compounds. While disulfiram was already classified as false positive in
the dose-response curve, parthenolide was an actual false negative within the second run. With
regard to false negatives in the first run, no additional compounds above hit thresholds were
identified in the second run, thus demonstrating the reliability of the pilot screen.

Adult schistosomes viability assay
Since adult schistosomes are the main target of schistosomiasis treatments, the last step in the
screening was an in vitro testing against mature parasites. To this end, S. mansoni adult male
worms (8–10 weeks old) were recovered from infected mice and treated with the selected com-
pounds at the concentrations of 10 and 20 μM. Included in the screening were also GA and
PZQ as positive controls. Following 24 hours of incubation in presence of the drugs, parasites
were washed, placed in fresh medium and observed for 5 days. During this time, significant re-
duction in viability was detected in parasites treated with 10 μM sanguinarine chloride hydrate,
menadione and thonzonium bromide, compared to DMSO treated worms (negative control)
as shown in Fig. 6. In particular, we found that treatment with thonzonium bromide resulted
in 100% lethal phenotype whereas a strong decrease in viability (approximately 70%) was re-
corded in worms exposed to sanguinarine chloride hydrate and menadione. Already 24 hours
after exposure to sanguinarine chloride hydrate and menadione, worms appeared no longer at-
tached to the petri dish and showed tegumental damages and movement defects. Such “sick”
phenotypes lasted until day 5 of culture. Finally, we found that disulfiram and parthenolide did
not impair S. mansoni worm viability even when tested at 20 μM.

Table 1. LD50 of hit compounds on schistosomula.

Compound LD50 (μM)

Gambogic acid 1.13–2.14

Parthenolide 10.07–15.91

Disulfiram Not validated

Menadione 4.26–7.71

Thonzonium 0.73–1.72

Sanguinarine 1.98–3.03

doi:10.1371/journal.pntd.0003484.t001
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Figure 6. Effect of different drugs on viability and phenotype of adult S. mansoniworms in vitro. Adult
worms were incubated with the indicated compounds and phenotypes were scored as described under
Materials and Methods. (A) Viability curves of adult schistosomes cultured for 5 days following overnight
treatment in the presence of 10 μM hit compounds (mean ± SE, three independent experiments). Different
phenotypes of adult schistosomes 5 days after overnight exposure to DMSO alone (B), PZQ (C), GA (D),
parthenolide (E), disulfiram (F), menadione (G), thonzonium bromide (H) and sanguinarine chloride hydrate
(I). Scale bar = 0.2 cm.

doi:10.1371/journal.pntd.0003484.g006

A Luminescence-based Assay for Schistosomiasis Drug Discovery

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003484 January 30, 2015 11 / 16



Discussion
In the present study we describe the development and validation of a novel medium- through-
put assay to detect viability of S. mansoni schistosomula. Schistosomiasis is a chronic parasitic
disease with a mortality estimated at 280,000 deaths every year in Sub-Saharan Africa [13, 26].
As chemotherapy relies on a single drug (PZQ), many initiatives have been promoted aiming
to search for novel anti-schistosomal drugs that can represent a valid alternative to the current
treatment or could be used in case of emerging resistance. Unfortunately, such drug discovery
process is often slow and lacking a uniform and quantifiable evaluation method [27].

Here, we have established the optimal conditions for the application of a luminescence-
based assay for the medium-throughput screening of a compound library using S. mansoni
schistosomula. This assay is based on the quantitation of the parasite ATP by means of lumi-
nescence detection. The use of this technology is widely accepted in the study of the cytotoxic
potential of compounds on proliferating cells, since ATP is the primary energy source in cells,
a fact that well correlates with their proliferation and metabolic activity. In addition, the detec-
tion of ATP is made extremely simple by commercial kits based on the use of an exogenous lu-
ciferase whose light signal is proportional to ATP concentration in the sample. ATP-based
viability assays have also been used, with high-throughput formats, in unicellular parasitic pro-
tozoa such as Trypanosoma brucei [28], Entamoeba histolytica [29], Plasmodium berghei
ANKA [30] and in Leishmania donovani for the study of a limited number of compounds [31].
However, to our knowledge, this methodology was never, applied before to medium-high
throughput compounds screening in multicellular organisms, such as schistosomes.

Taking advantage of schistosomula handy characteristics such as their small size and avail-
ability in large numbers, we initially focused on setting the best conditions of this assay in the
larval stage of the parasite.

Only a limited number of assays suitable for objective high-throughput methods are pres-
ently in use and their advantage and limitations have been recently highlighted by others [19].
Briefly, the assays are based on assessment of: i) metabolic activity (MTT, Alamar Blue and
Acid phosphatase); ii) viability through generated heat flow by isothermal microcalorimetry
[32] or fluorescence-based assays with single (i.e. resazurin) [14, 33] or multiple dyes selectively
taken up by damaged or healthy organisms [15]; iii) motility by electrical impedance through a
real-time cell monitoring device, xCELLigence system; iv) high-content systems, image-based
methods that can record morphological and motility changes [19]. Nonetheless these methods
present some problems especially if used in a screening campaign: i) fluorescence based meta-
bolic assays are affected by spurious signals due to compounds auto-fluorescence; methods ii)
and iii) are hard to automate, low throughput and require special detection devices; finally iv)
methods are protocol intensive and subject to automated image analysis biases [34].

In this work, the ATP based viability assay was compared head to head to the fluorescence-
based microscopy assays where the quantitation relies on the differential uptake of PI or FDA
by dead and live parasites respectively [15]. The latter technology is very labor-intensive, as
several washes are required before staining; in addition fluorescence image analysis, results in
low-throughout and highly variable results. Moreover, the fluorescence readout is often affect-
ed by interferences produced by test compounds, especially when screening random libraries.
Finally, image analysis is not easily automated, limiting its use to relatively small compound
collections. Comparing these two technologies, the ATP-based detection demonstrated its abil-
ity not only to discern between different amounts of parasites, but also to probe their metabolic
status while they are still intact. Furthermore, although we have demonstrated that both tech-
niques are accurate and result in a comparable GA LD50, we found the ATP-based assay more
reliable in terms of reproducibility and rapidity.
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We next applied this new luminescence-based assay to a pilot screening exercise in which
five potential killing agents (sanguinarine chloride hydrate, disulfiram, parthenolide, thonzo-
nium bromide and menadione) were defined as hits from a compound collection of 1,280 ap-
proved drugs for human use. Remarkably, four of these compounds have been previously
investigated for their anti-parasitic activity. In particular, sanguinarine chloride hydrate, which
is a natural benzophenanthridine alkaloid derived from the root of Sanguinaria canadensis
[35], well known for its anti-inflammatory and anti-cancer properties [36, 37], was also found
to exert a potent anti-schistosomal activity on S. mansoni cercariae and adult worms (100%
mortality in 48 hours at 10 μM) [23]. A second compound, parthenolide, the main sesquiter-
pene lactone (STL) isolated from Tanacetum parthenium and Tanacetum vulgare plants,
proved to be active against parasites such as Trypanosoma cruzi and Leishmania amazonensis
[38]. Interestingly, the crude extract and the essential oil of the aerial parts of T. vulgare re-
sulted also effective against S. mansoni adult worms [39] while STL showed molluscicidal prop-
erties against the snail vector B. glabrata [40]. With regard to disulfiram, it was observed that
chronic administration of the drug in the diet produced a 60% reduction in the mortality of
mice carrying a heavy schistosome burden. This reduction in mortality was associated with an
80% decrease in granuloma formation [41]. A similar effect was also observed in Trichuris
muris (phylum Nematoda) for which disulfiram treatment of infected mice led to the produc-
tion of malformed eggs incapable of infecting naive mice [42]. Moreover, disulfiram has also
shown toxicity toward the malaria parasite [43] and efficacy against Giardia lamblia [44],
Trichomonas vaginalis and Trichomonas foetus [45] infections. Finally, menadione had highly
toxic effects on trophozoites and cysts of Giardia intestinalis [46].

Taken together, these studies suggest that our findings are in accordance with the anti-para-
sitic activity reported with different organisms, thus supporting the efficiency of our methodol-
ogy for the discovery of novel anti-schistosomal compounds.

We finally tested all the hit compounds on ex vivo adult worms. Of the five compounds test-
ed only thonzonium bromide exerted a lethal effect (100% mortality) after 24 hours, whereas
menadione and sanguinarine chloride hydrate caused reduced viability (70% mortality) 5 days
after treatment. These results are not surprising as they are in accordance with previous studies
showing that the activity of some drugs, e.g. PZQ, is dependent on the age of infection, sex of
the worms and on the paired or unpaired status of parasites [4–6].

In conclusion, we demonstrated that our methodology enables the objective measurement
of schistosomula viability, it has high sensitivity and permits simple and fast screenings, thus
representing a valid alternative to fluorescence-based microscopy assays.

Supporting Information
S1 Fig. CellTox green dye does not stain intact schistosomula. Representative bright field (A)
and fluorescence (B) microscopy images of schistosomula treated with DMSO and incubated
with the membrane-impermeant DNA dye CellTox green are shown. Scale bar = 20 μm.
(TIF)
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