7,401 research outputs found
Momentum Space Integral Equations for Three Charged Particles: Diagonal Kernels
It has been a long-standing question whether momentum space integral
equations of the Faddeev type are applicable to reactions of three charged
particles, in particular above the three-body threshold. For, the presence of
long-range Coulomb forces has been thought to give rise to such severe
singularities in their kernels that the latter may lack the compactness
property known to exist in the case of purely short-range interactions.
Employing the rigorously equivalent formulation in terms of an
effective-two-body theory we have proved in a preceding paper [Phys. Rev. C
{\bf 61}, 064006 (2000)] that, for all energies, the nondiagonal kernels
occurring in the integral equations which determine the transition amplitudes
for all binary collision processes, possess on and off the energy shell only
integrable singularities, provided all three particles have charges of the same
sign, i.e., all Coulomb interactions are repulsive. In the present paper we
prove that, for particles with charges of equal sign, the diagonal kernels, in
contrast, possess one, but only one, nonintegrable singularity. The latter can,
however, be isolated explicitly and dealt with in a well-defined manner. Taken
together these results imply that modified integral equations can be
formulated, with kernels that become compact after a few iterations. This
concludes the proof that standard solution methods can be used for the
calculation of all binary (i.e., (in-)elastic and rearrangement) amplitudes by
means of momentum space integral equations of the effective-two-body type.Comment: 36 pages, 2 figures, accepted for publication in Phys. Rev.
Long-range behavior of the optical potential for the elastic scattering of charged composite particles
The asymptotic behavior of the optical potential, describing elastic
scattering of a charged particle off a bound state of two charged, or
one charged and one neutral, particles at small momentum transfer
or equivalently at large intercluster distance
, is investigated within the framework of the exact three-body
theory. For the three-charged-particle Green function that occurs in the exact
expression for the optical potential, a recently derived expression, which is
appropriate for the asymptotic region under consideration, is used. We find
that for arbitrary values of the energy parameter the non-static part of the
optical potential behaves for as
. From this we derive for the
Fourier transform of its on-shell restriction for the behavior , i.e.,
dipole or quadrupole terms do not occur in the coordinate-space asymptotics.
This result corroborates the standard one, which is obtained by perturbative
methods. The general, energy-dependent expression for the dynamic
polarisability is derived; on the energy shell it reduces to the
conventional polarisability which is independent of the energy. We
emphasize that the present derivation is {\em non-perturbative}, i.e., it does
not make use of adiabatic or similar approximations, and is valid for energies
{\em below as well as above the three-body dissociation threshold}.Comment: 35 pages, no figures, revte
Collaborative Uploading in Heterogeneous Networks: Optimal and Adaptive Strategies
Collaborative uploading describes a type of crowdsourcing scenario in
networked environments where a device utilizes multiple paths over neighboring
devices to upload content to a centralized processing entity such as a cloud
service. Intermediate devices may aggregate and preprocess this data stream.
Such scenarios arise in the composition and aggregation of information, e.g.,
from smartphones or sensors. We use a queuing theoretic description of the
collaborative uploading scenario, capturing the ability to split data into
chunks that are then transmitted over multiple paths, and finally merged at the
destination. We analyze replication and allocation strategies that control the
mapping of data to paths and provide closed-form expressions that pinpoint the
optimal strategy given a description of the paths' service distributions.
Finally, we provide an online path-aware adaptation of the allocation strategy
that uses statistical inference to sequentially minimize the expected waiting
time for the uploaded data. Numerical results show the effectiveness of the
adaptive approach compared to the proportional allocation and a variant of the
join-the-shortest-queue allocation, especially for bursty path conditions.Comment: 15 pages, 11 figures, extended version of a conference paper accepted
for publication in the Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM), 201
Thoughts on Barnette's Conjecture
We prove a new sufficient condition for a cubic 3-connected planar graph to
be Hamiltonian. This condition is most easily described as a property of the
dual graph. Let be a planar triangulation. Then the dual is a cubic
3-connected planar graph, and is bipartite if and only if is
Eulerian. We prove that if the vertices of are (improperly) coloured blue
and red, such that the blue vertices cover the faces of , there is no blue
cycle, and every red cycle contains a vertex of degree at most 4, then is
Hamiltonian.
This result implies the following special case of Barnette's Conjecture: if
is an Eulerian planar triangulation, whose vertices are properly coloured
blue, red and green, such that every red-green cycle contains a vertex of
degree 4, then is Hamiltonian. Our final result highlights the
limitations of using a proper colouring of as a starting point for proving
Barnette's Conjecture. We also explain related results on Barnette's Conjecture
that were obtained by Kelmans and for which detailed self-contained proofs have
not been published.Comment: 12 pages, 7 figure
Medieval Skepticism as a Historiographical Category
The essay explores the plausibility of the historiographical category of medieval skepticism by inspecting two cases of putative skeptical arguments in the later middle ages, namely those of the Henry of Ghent and J. Duns Scotus. A methodological distinction between the history of philosophy and doxology is attempted before a cursory analysis of the epistemological controversy between both authors and its relationship with the skeptical principle of indistinguishability
Influence of Low Energy Hadronic Interactions on Air-shower Simulations
Experiments measuring cosmic rays above an energy of 10^14 eV deduce the
energy and mass of the primary cosmic ray particles from air-shower
simulations. We investigate the importance of hadronic interactions at low and
high energies on the distributions of muons and electrons in showers on ground.
In air shower simulation programs, hadronic interactions below an energy
threshold in the range from 80 GeV to 500 GeV are simulated by low energy
interaction models, like Fluka or Gheisha, and above that energy by high energy
interaction models, e.g. Sibyll or QGJSJet. We find that the impact on shower
development obtained by switching the transition energy from 80 GeV to 500 GeV
is comparable to the difference obtained by switching between Fluka and
Gheisha.Comment: 4 pages, 6 figures, ISVHECRI 200
Three- and Four-Body Scattering Calculations including the Coulomb Force
The method of screening and renormalization for including the Coulomb
interaction in the framework of momentum-space integral equations is applied to
the three- and four-body nuclear reactions. The Coulomb effect on the
observables and the ability of the present nuclear potential models to describe
the experimental data is discussed.Comment: Proceedings of the Critical Stability workshop, Erice, Sicily,
October 2008, to be published in Few-Body System
Three charged particles in the continuum. Astrophysical examples
We suggest a new adiabatic approach for description of three charged
particles in the continuum. This approach is based on the Coulomb-Fourier
transformation (CFT) of three body Hamiltonian, which allows to develop a
scheme, alternative to Born-Oppenheimer one.
The approach appears as an expansion of the kernels of corresponding integral
transformations in terms of small mass-ratio parameter. To be specific, the
results are presented for the system in the continuum. The wave function
of a such system is compared with that one which is used for estimation of the
rate for triple reaction which take place as a step of
-cycle in the center of the Sun. The problem of microscopic screening for
this particular reaction is discussed
- …