58 research outputs found

    Current Status of Internal Cardioversion in Atrial Fibrillation

    Get PDF
    The method of internal cardioversion for restoration of sinus rhythm using transvenous electrodes has been reported in several animal6,7 and human studies 8,9,10,11,12,13,14,15. Cooper et al6 tested multiple electrode configurations in a sheep model of atrial fibrillation. They demonstrated that the optimal single current pathway for internal atrial defibrillation employed two electrodes that surrounded both atria (e.g., right atrial appendage and distal coronary sinus). Similar results have been reported in several human studies12,13,14. Internal cardioversion has been shown to be superior to conventional external cardioversion in terms of primary success rate, energy requirements and the need for sedation; this superiority holds especially true for patients with a high body mass index of > 25 kg/m2 and increased transthoracic diameter

    La FReeBank : vers une base libre de corpus annotés

    Get PDF
    Colloque avec actes et comité de lecture. internationale.International audienceLes corpus français librement accessibles annotés à d'autres niveaux linguistiques que morpho-syntaxique sont insuffisants à la fois quantitativement et qualitativement. Partant de ce constat, la FREEBANK définit une base de corpus du français annotés à plusieurs niveaux (structurel, morphologique, syntaxique, coréférentiel) et à différents degrés de finesse linguistique qui soit libre d'accÚs, codée selon des schémas normalisés, intégrant des ressources existantes et ouverte à l'enrichissement progressif

    CFD-modeling and Experiments of insulation debris transport phenomena in water flow

    Get PDF
    The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented

    Low expression of galectin-3 is associated with poor survival in node-positive breast cancers and mesenchymal phenotype in breast cancer stem cells

    Get PDF
    Background Galectin-3 (Gal3) plays diverse roles in cancer initiation, progression, and drug resistance depending on tumor type characteristics that are also associated with cancer stem cells (CSCs). Recurrence of breast carcinomas may be attributed to the presence of breast CSCs (BCSCs). BCSCs exist in mesenchymal-like or epithelial-like states and the transition between these states endows BCSCs with the capacity for tumor progression. The discovery of a feedback loop with galectins during epithelial-to-mesenchymal transition (EMT) prompted us to investigate its role in breast cancer stemness. Method To elucidate the role of Gal3 in BCSCs, we performed various in vitro and in vivo studies such as sphere-formation assays, Western blotting, flow cytometric apoptosis assays, and limited dilution xenotransplant models. Histological staining for Gal3 in tissue microarrays of breast cancer patients was performed to analyze the relationship of clinical outcome and Gal3 expression. Results Here, we show in a cohort of 87 node-positive breast cancer patients treated with doxorubicin-based chemotherapy that low Gal3 was associated with increased lymphovascular invasion and reduced overall survival. Analysis of in vitro BCSC models demonstrated that Gal3 knockdown by small hairpin RNA (shRNA) interference in epithelial-like mammary spheres leads to EMT, increased sphere-formation ability, drug-resistance, and heightened aldefluor activity. Furthermore, Gal3negative BCSCs were associated with enhanced tumorigenicity in orthotopic mouse models. Conclusions Thus, in at least some breast cancers, loss of Gal3 might be associated with EMT and cancer stemness-associated traits, predicts poor response to chemotherapy, and poor prognosis

    Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction

    Get PDF
    Aims This study was designed to assess whether intracoronary application of adipose tissue-derived stem cells (ADSCs) compared with bone marrow-derived stem cells (BMSCs) and control could improve cardiac function after 30 days in a porcine acute myocardial infarction/reperfusion model. Methods and results An acute transmural porcine myocardial infarction was induced by inflating an angioplasty balloon for 180 min in the mid-left anterior descending artery. Two million cultured autologous stem cells were intracoronary injected through the central lumen of the inflated balloon catheter. Analysis of scintigraphic data obtained after 28 + 3 days showed that both absolute and relative perfusion defect decreased significantly after intracoronary administration of ADSCs or BMSCs (relative 30 or 31%, respectively), compared with carrier administration alone (12%, P Π0.048). Left ventricular ejection fraction after 4 weeks increased significantly more after ADSC and BMSC administration than after carrier administration: 11.39 + 4.62 and 9.59 + 7.95%, respectively vs. 1.95 + 4.7%, P Π0.02). The relative thickness of the ventricular wall in the infarction area after cell administration was significantly greater than that after carrier administration. The vascular density of the border zone also improved. The grafted cells co-localized with von Willebrand factor and alpha-smooth muscle actin and incorporated into newly formed vessels. Conclusion This is the first study to show that not only bone marrow-derived cells but also ADSCs engrafted in the infarct region 4 weeks after intracoronary cell transplantation and improved cardiac function and perfusion via angiogenesis

    Numerical and experimental investigations for insulation particle transport phenomena in water flow

    Get PDF
    The investigation of insulation debris generation, transport and sedimentation becomes more important with regard to reactor safety research for pressurized and boiling water reactors, when considering the long-term behaviour of emergency core coolant systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of a disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb or impinge on the emergency core cooling systems. Open questions of generic interest are for example the particle load on strainers and corresponding pressure-drop, the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow. A joint research project on such questions is being performed in cooperation with the University of Applied Science Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation and the development of computational fluid dynamic (CFD) models for the description of particle transport phenomena in coolant flow. While the experiments are performed at the University Zittau/Görlitz, the theoretical work is concentrated at Forschungszentrum Dresden-Rossendorf. In the present paper, the basic concepts for computational fluid dynamic (CFD) modelling are described and experimental results are presented. Further experiments are designed and feasibility studies were performed
    • 

    corecore