198 research outputs found
Anti-Kaon Induced Reactions on the Nucleon
Using a previously established effective Lagrangian model we describe
anti-kaon induced reactions on the nucleon. The dominantly contributing
channels in the cm-energy region from threshold up to 1.72 GeV are included (K
N, \pi \Sigma, \pi \Lambda). We solve the Bethe-Salpeter equation in an unitary
-matrix approximation.Comment: 21 pages, 13 figures, minor typos corrected, accepted for publication
in Phys. Rev.
Measurement of the inclusive branching fraction tau- ---> TAU-neutrino pi- pi0 + neutral meson(s)
Heavy Flavour Production in Two-Photon Collisions
We review the production of charm and bottom quarks in two-photon collisions
at e+e- colliders. The next-to-leading order QCD predictions for total cross
sections and differential distributions are compared with recent experimental
results.Comment: 6 pages, 2 figures. Talk given at the UK Phenomenology Workshop on
Collider Physics, Durham, England, 19-24 Sep 199
Non-collapsing renormalized QRPA with proton-neutron pairing for neutrinoless double beta decay
Using the renormalized quasiparticle random phase approximation (RQRPA), we
calculate the light neutrino mass mediated mode of neutrinoless double beta
decay of Ge76, Mo100, Te128 and Te130. Our results indicate that the simple
quasiboson approximation is not good enough to study the neutrinoless double
beta decay, because its solutions collapse for physical values of g_pp. We find
that extension of the Hilbert space and inclusion of the Pauli Principle in the
QRPA with proton-neutron pairing, allows us to extend our calculations beyond
the point of collapse, for physical values of the nuclear force strength. As a
consequence one might be able to extract more accurate values on the effective
neutrino mass by using the best available experimental limits on the half-life
of neutrinoless double beta decay.Comment: 15 pages, RevTex, 2 Postscript figures, to appear in Phys. Lett.
Recommended from our members
Quench protection for a 2-MJ magnet
A superconducting solenoid with conductive bore tube has been used at energies up to 1.9-MJ to test various methods of quench protection. The methods all involve shifting the main coil current to the conductive bore tube and include (1) allowing the quench to evolve naturally, (2) interrupting the primary circuit while providing a varistor used as a shunt across the coil, and (3) turning the entire magnet normal by dumping a short pulse of current from a capacitor bank through the windings
A large Hilbert space QRPA and RQRPA calculation of neutrinoless double beta decay
A large Hilbert space is used for the calculation of the nuclear matrix
elements governing the light neutrino mass mediated mode of neutrinoless double
beta decay of Ge76, Mo100, Cd116, Te128 and Xe136 within the proton-neutron
quasiparticle random phase approximation (pn-QRPA) and the renormalized QRPA
with proton-neutron pairing (full-RQRPA) methods. We have found that the
nuclear matrix elements obtained with the standard pn-QRPA for several nuclear
transitions are extremely sensitive to the renormalization of the
particle-particle component of the residual interaction of the nuclear
hamiltonian. Therefore the standard pn-QRPA does not guarantee the necessary
accuracy to allow us to extract a reliable limit on the effective neutrino
mass. This behaviour, already known from the calculation of the two-neutrino
double beta decay matrix elements, manifests itself in the neutrinoless
double-beta decay but only if a large model space is used. The full-RQRPA,
which takes into account proton-neutron pairing and considers the Pauli
principle in an approximate way, offers a stable solution in the physically
acceptable region of the particle-particle strength. In this way more accurate
values on the effective neutrino mass have been deduced from the experimental
lower limits of the half-lifes of neutrinoless double beta decay.Comment: 19 pages, RevTex, 1 Postscript figur
Neutrinoless Double Beta Decay within QRPA with Proton-Neutron Pairing
We have investigated the role of proton-neutron pairing in the context of the
Quasiparticle Random Phase approximation formalism. This way the neutrinoless
double beta decay matrix elements of the experimentally interesting A= 48, 76,
82, 96, 100, 116, 128, 130 and 136 systems have been calculated. We have found
that the inclusion of proton-neutron pairing influences the neutrinoless double
beta decay rates significantly, in all cases allowing for larger values of the
expectation value of light neutrino masses. Using the best presently available
experimental limits on the half life-time of neutrinoless double beta decay we
have extracted the limits on lepton number violating parameters.Comment: 16 RevTex page
A Measurement of the Cross Section in Two-Photon Processes
We have measured the inclusive production cross section in a
two-photon collision at the TRISTAN collider. The mean of
the collider was 57.16 GeV and the integrated luminosity was 150 . The
differential cross section () was obtained in the
range between 1.6 and 6.6 GeV and compared with theoretical predictions, such
as those involving direct and resolved photon processes.Comment: 8 pages, Latex format (article), figures corrected, published in
Phys. Rev. D 50 (1994) 187
- …