215 research outputs found
Trends in Using IoT with Machine Learning in Health Prediction System
Machine learning (ML) is a powerful tool that delivers insights hidden in Internet of Things (IoT) data. These hybrid technologies work smartly to improve the decision-making process in different areas such as education, security, business, and the healthcare industry. ML empowers the IoT to demystify hidden patterns in bulk data for optimal prediction and recommendation systems. Healthcare has embraced IoT and ML so that automated machines make medical records, predict disease diagnoses, and, most importantly, conduct real-time monitoring of patients. Individual ML algorithms perform differently on different datasets. Due to the predictive results varying, this might impact the overall results. The variation in prediction results looms large in the clinical decision-making process. Therefore, it is essential to understand the different ML algorithms used to handle IoT data in the healthcare sector. This article highlights well-known ML algorithms for classification and prediction and demonstrates how they have been used in the healthcare sector. The aim of this paper is to present a comprehensive overview of existing ML approaches and their application in IoT medical data. In a thorough analysis, we observe that different ML prediction algorithms have various shortcomings. Depending on the type of IoT dataset, we need to choose an optimal method to predict critical healthcare data. The paper also provides some examples of IoT and machine learning to predict future healthcare system trends.</jats:p
Determinants of load capacity factor in an emerging economy: The role of green energy consumption and technological innovation
Brazil’s ability to provide safe and dependable resources that can assist the nation achieve its goal of becoming carbon neutral by 2060 will have a significant impact on the nation’s sustainable development. Therefore, this study performs ARDL and frequency domain causality tests to evaluate the effect of disintegrated energy, technological innovation and economic growth on load capacity factor in South Africa between 1990 and 2018. The ARDL bounds test affirms a long-run interrelationship between the selected indicators in South Africa. The long-run elasticities show that economic expansion and nonrenewable energy deteriorate ecological quality, while green energy and technological innovation significantly boost ecological quality. The results of the frequency causality show that in the long-term, renewable energy, economic growth, technological innovation and nonrenewable energy Granger cause load capacity factor suggesting that the regressors can forecast the environmental quality in South Africa. Overall, these results demonstrate the significance of renewable energy in the fight against ecological deterioration. According to the aforementioned findings, South Africa’s environmental damage may be greatly reduced by renewable energy. Copyright © 2022 Liu, Olanrewaju, Agyekum, El-Naggar, Alrashed and Kamel.Ministry of Education in Saudi ArabiaPrince Sattam bin Abdulaziz University, PSAU, (IF-PSAU-2021/01/18921)Funding text 1: This research is funded by Prince Sattam Bin Abdulaziz University, grant number IF- PSAU-2021/01/18921.Funding text 2: The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia, for funding this research work through the project number (IF-PSAU-2021/01/18921)
Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC
The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP\u27s successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components
Searching for solar KDAR with DUNE
The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions
Recommended from our members
Reconstruction and measurement of (100) MeV energy electromagnetic activity from π0 arrow γγ decays in the MicroBooNE LArTPC
We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current νμ interactions with final state π0s. We employ a fully-automated reconstruction chain capable of identifying EM showers of (100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant π0 mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of νμ + Ar → μ + π0 + X candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of π0 kinematics
Recommended from our members
Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons
We describe a method used to calibrate the position- and time-dependent response of the MicroBooNE liquid argon time projection chamber anode wires to ionization particle energy loss. The method makes use of crossing cosmic-ray muons to partially correct anode wire signals for multiple effects as a function of time and position, including cross-connected TPC wires, space charge effects, electron attachment to impurities, diffusion, and recombination. The overall energy scale is then determined using fully-contained beam-induced muons originating and stopping in the active region of the detector. Using this method, we obtain an absolute energy scale uncertainty of 2% in data. We use stopping protons to further refine the relation between the measured charge and the energy loss for highly-ionizing particles. This data-driven detector calibration improves both the measurement of total deposited energy and particle identification based on energy loss per unit length as a function of residual range. As an example, the proton selection efficiency is increased by 2% after detector calibration
Design and construction of the MicroBooNE Cosmic Ray Tagger system
The MicroBooNE detector utilizes a liquid argon time projection chamber
(LArTPC) with an 85 t active mass to study neutrino interactions along the
Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground
level, the detector records many cosmic muon tracks in each beam-related
detector trigger that can be misidentified as signals of interest. To reduce
these cosmogenic backgrounds, we have designed and constructed a TPC-external
Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for
High Energy Physics (LHEP), Albert Einstein center for fundamental physics,
University of Bern. The system utilizes plastic scintillation modules to
provide precise time and position information for TPC-traversing particles.
Successful matching of TPC tracks and CRT data will allow us to reduce
cosmogenic background and better characterize the light collection system and
LArTPC data using cosmic muons. In this paper we describe the design and
installation of the MicroBooNE CRT system and provide an overview of a series
of tests done to verify the proper operation of the system and its components
during installation, commissioning, and physics data-taking
A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber
We have developed a convolutional neural network (CNN) that can make a
pixel-level prediction of objects in image data recorded by a liquid argon time
projection chamber (LArTPC) for the first time. We describe the network design,
training techniques, and software tools developed to train this network. The
goal of this work is to develop a complete deep neural network based data
reconstruction chain for the MicroBooNE detector. We show the first
demonstration of a network's validity on real LArTPC data using MicroBooNE
collection plane images. The demonstration is performed for stopping muon and a
charged current neutral pion data samples
Searching for solar KDAR with DUNE
The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions
Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintillation light
Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen
- …