19 research outputs found

    Spatial swarm segregation and reproductive isolation between the molecular forms of Anopheles gambiae

    Get PDF
    Anopheles gambiae, the major malaria vector in Africa, can be divided into two subgroups based on genetic and ecological criteria. These two subgroups, termed the M and S molecular forms, are believed to be incipient species. Although they display differences in the ecological niches they occupy in the field, they are often sympatric and readily hybridize in the laboratory to produce viable and fertile offspring. Evidence for assortative mating in the field was recently reported, but the underlying mechanisms awaited discovery. We studied swarming behaviour of the molecular forms and investigated the role of swarm segregation in mediating assortative mating. Molecular identification of 1145 males collected from 68 swarms in Donéguébougou, Mali, over 2 years revealed a strict pattern of spatial segregation, resulting in almost exclusively monotypic swarms with respect to molecular form. We found evidence of clustering of swarms composed of individuals of a single molecular form within the village. Tethered M and S females were introduced into natural swarms of the M form to verify the existence of possible mate recognition operating within-swarm. Both M and S females were inseminated regardless of their form under these conditions, suggesting no within-mate recognition. We argue that our results provide evidence that swarm spatial segregation strongly contributes to reproductive isolation between the molecular forms in Mali. However this does not exclude the possibility of additional mate recognition operating across the range distribution of the forms. We discuss the importance of spatial segregation in the context of possible geographic variation in mechanisms of reproductive isolation

    The distribution of hatching time in Anopheles gambiae

    Get PDF
    BACKGROUND: Knowledge of the ecological differences between the molecular forms of Anopheles gambiae and their sibling species, An. arabiensis might lead to understanding their unique contribution to disease transmission and to better vector control as well as to understanding the evolutionary forces that have separated them. METHODS: The distributions of hatching time of eggs of wild An. gambiae and An. arabiensis females were compared in different water types. Early and late hatchers of the S molecular form were compared with respect to their total protein content, sex ratio, development success, developmental time and adult body size. RESULTS: Overall, the distribution of hatching time was strongly skewed to the right, with 89% of the eggs hatching during the second and third day post oviposition, 10% hatching during the next four days and the remaining 1% hatching over the subsequent week. Slight, but significant differences were found between species and between the molecular forms in all water types. Differences in hatching time distribution were also found among water types (in each species and molecular form), suggesting that the eggs change their hatching time in response to chemical factors in the water. Early hatchers were similar to late hatchers except that they developed faster and produced smaller adults than late hatchers. CONCLUSION: Differences in hatching time and speed of development among eggs of the same batch may be adaptive if catastrophic events such as larval site desiccation are not rare and the site's quality is unpredictable. The egg is not passive and its hatching time depends on water factors. Differences in hatching time between species and molecular forms were slight, probably reflecting that conditions in their larval sites are rather similar

    Windborne long-distance migration of malaria mosquitoes in the Sahel

    Get PDF
    Over the past two decades efforts to control malaria have halved the number of cases globally, yet burdens remain high in much of Africa and the elimination of malaria has not been achieved even in areas where extreme reductions have been sustained, such as South Africa1,2. Studies seeking to understand the paradoxical persistence of malaria in areas in which surface water is absent for 3–8 months of the year have suggested that some species of Anopheles mosquito use long-distance migration3. Here we confirm this hypothesis through aerial sampling of mosquitoes at 40–290 m above ground level and provide—to our knowledge—the first evidence of windborne migration of African malaria vectors, and consequently of the pathogens that they transmit. Ten species, including the primary malaria vector Anopheles coluzzii, were identified among 235 anopheline mosquitoes that were captured during 617 nocturnal aerial collections in the Sahel of Mali. Notably, females accounted for more than 80% of all of the mosquitoes that we collected. Of these, 90% had taken a blood meal before their migration, which implies that pathogens are probably transported over long distances by migrating females. The likelihood of capturing Anopheles species increased with altitude (the height of the sampling panel above ground level) and during the wet seasons, but variation between years and localities was minimal. Simulated trajectories of mosquito flights indicated that there would be mean nightly displacements of up to 300 km for 9-h flight durations. Annually, the estimated numbers of mosquitoes at altitude that cross a 100-km line perpendicular to the prevailing wind direction included 81,000 Anopheles gambiae sensu stricto, 6 million A. coluzzii and 44 million Anopheles squamosus. These results provide compelling evidence that millions of malaria vectors that have previously fed on blood frequently migrate over hundreds of kilometres, and thus almost certainly spread malaria over these distances. The successful elimination of malaria may therefore depend on whether the sources of migrant vectors can be identified and controlled

    Spatial distribution and male mating success of Anopheles gambiae swarms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles gambiae </it>mates in flight at particular mating sites over specific landmarks known as swarm markers. The swarms are composed of males; females typically approach a swarm, and leave <it>in copula</it>. This mating aggregation looks like a lek, but appears to lack the component of female choice. To investigate the possible mechanisms promoting the evolution of swarming in this mosquito species, we looked at the variation in mating success between swarms and discussed the factors that structure it in light of the three major lekking models, known as the female preference model, the hotspot model, and the hotshot model.</p> <p>Results</p> <p>We found substantial variation in swarm size and in mating success between swarms. A strong correlation between swarm size and mating success was observed, and consistent with the hotspot model of lek formation, the <it>per capita </it>mating success of individual males did not increase with swarm size. For the spatial distribution of swarms, our results revealed that some display sites were more attractive to both males and females and that females were more attracted to large swarms. While the swarm markers we recognize help us in localizing swarms, they did not account for the variation in swarm size or in the swarm mating success, suggesting that mosquitoes probably are attracted to these markers, but also perceive and respond to other aspects of the swarming site.</p> <p>Conclusions</p> <p>Characterizing the mating system of a species helps understand how this species has evolved and how selective pressures operate on male and female traits. The current study looked at male mating success of <it>An. gambiae </it>and discussed possible factors that account for its variation. We found that swarms of <it>An. gambiae </it>conform to the hotspot model of lek formation. But because swarms may lack the female choice component, we propose that the <it>An. gambiae </it>mating system is a lek-like system that incorporates characteristics pertaining to other mating systems such as scramble mating competition.</p

    Investigation of the seasonal microbiome of Anopheles coluzzii mosquitoes in Mali.

    No full text
    The poorly understood mechanisms of dry season persistence of Anopheles spp. mosquitoes through the dry season in Africa remain a critical gap in our knowledge of Plasmodium disease transmission. While it is thought that adult mosquitoes remain in a dormant state throughout this seven-month dry season, the nature of this state remains unknown and has largely not been recapitulated in laboratory settings. To elucidate possible connections of this state with microbial composition, the whole body microbiomes of adult mosquitoes in the dry and wet seasons in two locations of Mali with varying water availability were compared by sequencing the 16S ribosomal RNA gene. These locations were a village near the Niger River with year-round water sources (N'Gabakoro, "riparian"), and a typical Sahelian area with highly seasonal breeding sites (Thierola Area, "Sahelian"). The 16S bacterial data consisted of 2057 sequence variants in 426 genera across 184 families. From these data, we found several compositional differences that were seasonally and spatially linked. Counter to our initial hypothesis, there were more pronounced seasonal differences in the bacterial microbiome of riparian, rather than Sahelian areas. These seasonal shifts were primarily in Ralstonia, Sphingorhabdus, and Duganella spp. bacteria that are usually soil and water-associated, indicating these changes may be from bacteria acquired in the larval environment, rather than adulthood. In Sahelian dry season mosquitoes, there was a unique intracellular bacteria, Anaplasma, which likely was acquired through non-human blood feeding. Cytochrome B analysis of blood meals showed greater heterogeneity in host choice of An. coluzzii independent of season in the Thierola area compared to N'Gabakoro (77.5% vs. 94.6% human-origin blood meal, respectively), indicating a relaxation of anthropophily. Overall, this exploratory study provides valuable indications of spatial and seasonal differences in bacterial composition which help refine this difficult to study state

    Data from: Tracing the origin of the early wet-season Anopheles coluzzii in the Sahel

    No full text
    In arid environments the source of the malaria mosquito populations that re-establish soon after first rains remains a puzzle and alternative explanations have been proposed. Using genetic data, we evaluated whether the early Rainy Season (RS) population of Anopheles coluzzii is descended from the preceding late-RS generation at the same locality, consistent with dry season (DS) dormancy (aestivation), or from migrants from distant locations. Distinct predictions derived from these two hypotheses were assessed, based on variation in 738 SNPs in eleven A. coluzzii samples, including seven samples spanning two years in a Sahelian village. As predicted by the ‘local origin under aestivation hypothesis’, temporal samples from the late RS and those collected after the first rain of the following RS were clustered together, whilst larger genetic distances were found among samples spanning the RS. Likewise, multi-locus genotype composition of samples from the end of the RS were similar across samples until the following RS, unlike samples that spanned the RS. Consistent with reproductive arrest during the DS, no genetic drift was detected between samples taken over that period, despite encompassing extreme population minima, whereas it was detected between samples spanning the RS. Accordingly, the variance in allele frequency increased with time over the RS, but not over the DS. However, not all the results agreed with aestivation. Large genetic distances separated samples taken a year apart, and during the first year, within-sample genetic diversity declined and increased back during the late RS, suggesting a bottleneck followed by migration. The decline of genetic diversity followed a mass distribution of insecticide treated nets was accompanied by a reduced mosquito density and a rise in the mutation conferring resistance to pyrethroids, indicating a bottleneck due to insecticidal selection. Overall, our results support aestivation in A. coluzzii during the DS that is accompanied by long distance migration in the late-RS

    Desiccation tolerance in Anopheles coluzzii: the effects of spiracle size and cuticular hydrocarbons

    No full text
    The African malaria mosquitoes Anopheles gambiae and Anopheles coluzzii range over forests and arid areas, where they withstand dry spells and months-long dry seasons, suggesting variation in their desiccation tolerance. We subjected a laboratory colony (G3) and wild Sahelian mosquitoes during the rainy and dry seasons to desiccation assays. The thoracic spiracles and amount and composition of cuticular hydrocarbons (CHCs) of individual mosquitoes were measured to determine the effects of these traits on desiccation tolerance. The relative humidity of the assay, body water available, rate of water loss and water content at death accounted for 88% of the variation in desiccation tolerance. Spiracle size did not affect the rate of water loss or desiccation tolerance of the colony mosquitoes, as was the case for the total CHCs. However, six CHCs accounted for 71% of the variation in desiccation tolerance and three accounted for 72% of the variation in the rate of water loss. Wild A. coluzzii exhibited elevated desiccation tolerance during the dry season. During that time, relative thorax and spiracle sizes were smaller than during the rainy season. A smaller spiracle size appeared to increase A. coluzzii's desiccation tolerance, but was not statistically significant. Seasonal changes in CHC composition were detected in Sahelian A. coluzzii. Stepwise regression models suggested the effect of particular CHCs on desiccation tolerance. In conclusion, the combination of particular CHCs along with the total amount of CHCs is a primary mechanism conferring desiccation tolerance in A. coluzzii, while variation in spiracle size might be a secondary mechanism

    3D tracking of mating events in wild swarms of the malaria mosquito Anopheles gambiae

    No full text
    Abstract — We describe an automated tracking system that allows us to reconstruct the 3D kinematics of individual mosquitoes in swarms of Anopheles gambiae. The inputs to the tracking system are video streams recorded from a stereo camera system. The tracker uses a two-pass procedure to automatically localize and track mosquitoes within the swarm. A human-in-the-loop step verifies the estimates and connects broken tracks. The tracker performance is illustrated using footage of mating events filmed in Mali in August 2010. I
    corecore