1,263 research outputs found
Documented international enquiry on solid sedimentary fossil fuels; Coal: definitions, classifications, reserves-resources and energy potential
This paper deals with all solid sedimentary fossil fuels, i.e. coal, the main one for geological reserves and resources, peat,
and oil shales. Definitions of coal ( < 50% ash) and coal seam (thickness and depth limits) are examined in view of an
international agreement regarding new concepts for a common reserves and resources evaluation using the same nomenclature.
The 50% ash limit, already adopted by UN-ECE for coal definition, allows the creation of a new category—the organic
shales (50–75% ash)—comprising energetic materials still valuable for thermal use (coal shales) or to be retorted for oil
production (oil shales).
Geological relations between coals, oil shales, solid bitumen, liquid hydrocarbons, natural gas, and coalbed methane are also
examined together with environmental problems.
As a final synthesis of all topics, the paper discusses the problems related with a modern geological classification of all solid
sedimentary fuels based on: various rank parameters (moisture content, calorific value, reflectance), maceral composition, and
mineral matter content (and washability).
Finally, it should be pointed out that the paper is presented as series of problems, some of them old ones, but never resolved
until now. In order to facilitate the next generation of coal geologists to resolve these problems on the basis of international
agreements, all sections begin with documented introductions for further questions opening an international enquiry. The
authors hope that the answers will be abundant enough and pertinent to permit synthetic international solutions, valuable for the
new millennium, with the help of interested consulted authorities, international pertinent organisations, and regional experts.
D 2002 Elsevier Science B.V. All rights reserved
Role of Cytolethal Distending Toxin in Altered Stool Form and Bowel Phenotypes in a Rat Model of Post-infectious Irritable Bowel Syndrome.
Background/aimsCampylobacter jejuni infection is a leading cause of acute gastroenteritis, which is a trigger for post-infectious irritable bowel syndrome (PI-IBS). Cytolethal distending toxin (CDT) is expressed by enteric pathogens that cause PI-IBS. We used a rat model of PI-IBS to investigate the role of CDT in long-term altered stool form and bowel phenotypes.MethodsAdult Sprague-Dawley rats were gavaged with wildtype C. jejuni (C+), a C. jejunicdtB knockout (CDT-) or saline vehicle (controls). Four months after gavage, stool from 3 consecutive days was assessed for stool form and percent wet weight. Rectal tissue was analyzed for intraepithelial lymphocytes, and small intestinal tissue was stained with anti-c-kit for deep muscular plexus interstitial cells of Cajal (DMP-ICC).ResultsAll 3 groups showed similar colonization and clearance parameters. Average 3-day stool dry weights were similar in all 3 groups, but day-to-day variability in stool form and stool dry weight were significantly different in the C+ group vs both controls (P < 0.01) and the CDT- roup (P < 0.01), but were not different in the CDT- vs controls. Similarly, rectal lymphocytes were significantly higher after C. jejuni (C+) infection vs both controls (P < 0.01) and CDT-exposed rats (P < 0.05). The counts in the latter 2 groups were not significantly different. Finally, c-kit staining revealed that DMP-ICC were reduced only in rats exposed to wildtype C. jejuni.ConclusionsIn this rat model of PI-IBS, CDT appears to play a role in the development of chronic altered bowel patterns, mild chronic rectal inflammation and reduction in DMP-ICC
Deterministic meeting of sniffing agents in the plane
Two mobile agents, starting at arbitrary, possibly different times from
arbitrary locations in the plane, have to meet. Agents are modeled as discs of
diameter 1, and meeting occurs when these discs touch. Agents have different
labels which are integers from the set of 0 to L-1. Each agent knows L and
knows its own label, but not the label of the other agent. Agents are equipped
with compasses and have synchronized clocks. They make a series of moves. Each
move specifies the direction and the duration of moving. This includes a null
move which consists in staying inert for some time, or forever. In a non-null
move agents travel at the same constant speed, normalized to 1. We assume that
agents have sensors enabling them to estimate the distance from the other agent
(defined as the distance between centers of discs), but not the direction
towards it. We consider two models of estimation. In both models an agent reads
its sensor at the moment of its appearance in the plane and then at the end of
each move. This reading (together with the previous ones) determines the
decision concerning the next move. In both models the reading of the sensor
tells the agent if the other agent is already present. Moreover, in the
monotone model, each agent can find out, for any two readings in moments t1 and
t2, whether the distance from the other agent at time t1 was smaller, equal or
larger than at time t2. In the weaker binary model, each agent can find out, at
any reading, whether it is at distance less than \r{ho} or at distance at least
\r{ho} from the other agent, for some real \r{ho} > 1 unknown to them. Such
distance estimation mechanism can be implemented, e.g., using chemical sensors.
Each agent emits some chemical substance (scent), and the sensor of the other
agent detects it, i.e., sniffs. The intensity of the scent decreases with the
distance.Comment: A preliminary version of this paper appeared in the Proc. 23rd
International Colloquium on Structural Information and Communication
Complexity (SIROCCO 2016), LNCS 998
Time-Energy Tradeoffs for Evacuation by Two Robots in the Wireless Model
Two robots stand at the origin of the infinite line and are tasked with
searching collaboratively for an exit at an unknown location on the line. They
can travel at maximum speed and can change speed or direction at any time.
The two robots can communicate with each other at any distance and at any time.
The task is completed when the last robot arrives at the exit and evacuates. We
study time-energy tradeoffs for the above evacuation problem. The evacuation
time is the time it takes the last robot to reach the exit. The energy it takes
for a robot to travel a distance at speed is measured as . The
total and makespan evacuation energies are respectively the sum and maximum of
the energy consumption of the two robots while executing the evacuation
algorithm.
Assuming that the maximum speed is , and the evacuation time is at most
, where is the distance of the exit from the origin, we study the
problem of minimizing the total energy consumption of the robots. We prove that
the problem is solvable only for . For the case , we give an
optimal algorithm, and give upper bounds on the energy for the case .
We also consider the problem of minimizing the evacuation time when the
available energy is bounded by . Surprisingly, when is a
constant, independent of the distance of the exit from the origin, we prove
that evacuation is possible in time , and this is optimal up
to a logarithmic factor. When is linear in , we give upper bounds
on the evacuation time.Comment: This is the full version of the paper with the same title which will
appear in the proceedings of the 26th International Colloquium on Structural
Information and Communication Complexity (SIROCCO'19) L'Aquila, Italy during
July 1-4, 201
Revisiting the Problem of Searching on a Line
We revisit the problem of searching for a target at an unknown location on a
line when given upper and lower bounds on the distance D that separates the
initial position of the searcher from the target. Prior to this work, only
asymptotic bounds were known for the optimal competitive ratio achievable by
any search strategy in the worst case. We present the first tight bounds on the
exact optimal competitive ratio achievable, parameterized in terms of the given
bounds on D, along with an optimal search strategy that achieves this
competitive ratio. We prove that this optimal strategy is unique. We
characterize the conditions under which an optimal strategy can be computed
exactly and, when it cannot, we explain how numerical methods can be used
efficiently. In addition, we answer several related open questions, including
the maximal reach problem, and we discuss how to generalize these results to m
rays, for any m >= 2
NF-κB: A lesson in family values
A set of mobile robots (represented as points) is distributed in the Cartesian plane. The collection contains an unknown subset of byzantine robots which are indistinguishable from the reliable ones. The reliable robots need to gather, i.e., arrive to a configuration in which at the same time, all of them occupy the same point on the plane. The robots are equipped with GPS devices and at the beginning of the gathering process they communicate the Cartesian coordinates of their respective positions to the central authority. On the basis of this information, without the knowledge of which robots are faulty, the central authority designs a trajectory for every robot. The central authority aims to provide the trajectories which result in the shortest possible gathering time of the healthy robots. The efficiency of a gathering strategy is measured by its competitive ratio, i.e., the maximal ratio between the time required for gathering achieved by the given trajectories and the optimal time required for gathering in the offline case, i.e., when the faulty robots are known to the central authority in advance. The role of the byzantine robots, controlled by the adversary, is to act so that the gathering is delayed and the resulting competitive ratio is maximized. The objective of our paper is to propose efficient algorithms when the central authority is aware of an upper bound on the number of byzantine robots. We give optimal algorithms for collections of robots known to contain at most one faulty robot. When the proportion of byzantine robots is known to be less than one half or one third, we provide algorithms with small constant competitive ratios. We also propose algorithms with bounded competitive ratio in the case where the proportion of faulty robots is arbitrary
Fast Two-Robot Disk Evacuation with Wireless Communication
In the fast evacuation problem, we study the path planning problem for two
robots who want to minimize the worst-case evacuation time on the unit disk.
The robots are initially placed at the center of the disk. In order to
evacuate, they need to reach an unknown point, the exit, on the boundary of the
disk. Once one of the robots finds the exit, it will instantaneously notify the
other agent, who will make a beeline to it.
The problem has been studied for robots with the same speed~\cite{s1}. We
study a more general case where one robot has speed and the other has speed
. We provide optimal evacuation strategies in the case that by showing matching upper and lower bounds on the
worst-case evacuation time. For , we show (non-matching)
upper and lower bounds on the evacuation time with a ratio less than .
Moreover, we demonstrate that a generalization of the two-robot search strategy
from~\cite{s1} is outperformed by our proposed strategies for any .Comment: 18 pages, 10 figure
Gathering in Dynamic Rings
The gathering problem requires a set of mobile agents, arbitrarily positioned
at different nodes of a network to group within finite time at the same
location, not fixed in advanced.
The extensive existing literature on this problem shares the same fundamental
assumption: the topological structure does not change during the rendezvous or
the gathering; this is true also for those investigations that consider faulty
nodes. In other words, they only consider static graphs. In this paper we start
the investigation of gathering in dynamic graphs, that is networks where the
topology changes continuously and at unpredictable locations.
We study the feasibility of gathering mobile agents, identical and without
explicit communication capabilities, in a dynamic ring of anonymous nodes; the
class of dynamics we consider is the classic 1-interval-connectivity.
We focus on the impact that factors such as chirality (i.e., a common sense
of orientation) and cross detection (i.e., the ability to detect, when
traversing an edge, whether some agent is traversing it in the other
direction), have on the solvability of the problem. We provide a complete
characterization of the classes of initial configurations from which the
gathering problem is solvable in presence and in absence of cross detection and
of chirality. The feasibility results of the characterization are all
constructive: we provide distributed algorithms that allow the agents to
gather. In particular, the protocols for gathering with cross detection are
time optimal. We also show that cross detection is a powerful computational
element.
We prove that, without chirality, knowledge of the ring size is strictly more
powerful than knowledge of the number of agents; on the other hand, with
chirality, knowledge of n can be substituted by knowledge of k, yielding the
same classes of feasible initial configurations
Byzantine Gathering in Networks
This paper investigates an open problem introduced in [14]. Two or more
mobile agents start from different nodes of a network and have to accomplish
the task of gathering which consists in getting all together at the same node
at the same time. An adversary chooses the initial nodes of the agents and
assigns a different positive integer (called label) to each of them. Initially,
each agent knows its label but does not know the labels of the other agents or
their positions relative to its own. Agents move in synchronous rounds and can
communicate with each other only when located at the same node. Up to f of the
agents are Byzantine. A Byzantine agent can choose an arbitrary port when it
moves, can convey arbitrary information to other agents and can change its
label in every round, in particular by forging the label of another agent or by
creating a completely new one.
What is the minimum number M of good agents that guarantees deterministic
gathering of all of them, with termination?
We provide exact answers to this open problem by considering the case when
the agents initially know the size of the network and the case when they do
not. In the former case, we prove M=f+1 while in the latter, we prove M=f+2.
More precisely, for networks of known size, we design a deterministic algorithm
gathering all good agents in any network provided that the number of good
agents is at least f+1. For networks of unknown size, we also design a
deterministic algorithm ensuring the gathering of all good agents in any
network but provided that the number of good agents is at least f+2. Both of
our algorithms are optimal in terms of required number of good agents, as each
of them perfectly matches the respective lower bound on M shown in [14], which
is of f+1 when the size of the network is known and of f+2 when it is unknown
- …
