1,385 research outputs found

    Synthesis and spectroscopic characterization of Ru(II) and Sn(IV)-porphyrins supramolecular complexes

    Get PDF
    Copyright © 2014 Published by Elsevier B.V. All rights reserved. Synthesis and NMR studies of Ru(II) and Sn(IV) tetraphenylporphyrins supramolecular complexes were carried out. The diffusion coefficients of the complexes, porphyrinates, and solvents were determined by DOSY NMR spectroscopy. By the method of spectrophotometric titration a binding ability of Ru(II) tetraphenylporphyrin towards 4-(imidazol-1-yl)-phenol was investigated, stability constant of resulting complexes and concentration intervals of their existence were defined. Crow

    Studies of the dose-effect relation

    Get PDF
    Dose-effect relations and, specifically, cell survival curves are surveyed with emphasis on the interplay of the random factors — biological variability, stochastic reaction of the cell, and the statistics of energy deposition —that co-determine their shape. The global parameters mean inactivation dose, , and coefficient of variance, V, represent this interplay better than conventional parameters. Mechanisms such as lesion interaction, misrepair, repair overload, or repair depletion have been invoked to explain sigmoid dose dependencies, but these notions are partly synonymous and are largely undistinguishable on the basis of observed dose dependencies. All dose dependencies reflect, to varying degree, the microdosimetric fluctuations of energy deposition, and these have certain implications, e.g. the linearity of the dose dependence at small doses, that apply regardless of unresolved molecular mechanisms of cellular radiation action

    Id-1 stimulates cell proliferation through activation of EGFR in ovarian cancer cells

    Get PDF
    Increased EGFR (epidermal growth factor receptor) expression has been reported in many types of human cancer and its levels are positively associated with advanced cancers. Recently, upregulation of Id-1 (inhibitor of differentiation or DNA binding) protein was found in over 70% of ovarian cancer samples and correlated with poor survival of ovarian cancer patients. However, the molecular mechanisms responsible for the role of Id-1 in ovarian cancer are not clear. The aim of this study was to investigate the effect of Id-1 on ovarian cancer proliferation and its association with the EGFR pathway. To achieve this, we transfected an Id-1 expression vector into three ovarian cancer cell lines and examined cell proliferation rate by flow cytometry and bromodeoxyuridine staining. We found that ectopic Id-1 expression led to increased cell proliferation demonstrated by increased BrdU incorporation rate and S-phase fraction. The Id-1-induced cell growth was associated with upregulation of EGFR at both transcriptional and protein levels. In contrast, inactivation of Id-1 through transfection of an Id-1 antisense vector resulted in downregulation of EGFR. Our results indicate that increased Id-1 in ovarian cancer cells may promote cancer cell proliferation through upregulation of EGFR. Our findings also implicate that Id-1 may be a potential target for the development of novel strategies in the treatment of ovarian cancer. © 2004 Cancer Research UK.link_to_OA_fulltex

    Intrabiliary rupture of liver hydatid cyst: a case report and review of the literature

    Get PDF
    Herein, we report a 66 year old woman who was diagnosed to have intrabiliary rupture of liver hydatid cyst with demonstrative computed tomography, magnetic resonance imaging, and magnetic resonance cholangiopancreatography findings, with a review of the literature

    Strange Meson Enhancement in PbPb Collisions

    Get PDF
    The NA44 Collaboration has measured yields and differential distributions of K+, K-, pi+, pi- in transverse kinetic energy and rapidity, around the center-of-mass rapidity in 158 A GeV/c Pb+Pb collisions at the CERN SPS. A considerable enhancement of K+ production per pi is observed, as compared to p+p collisions at this energy. To illustrate the importance of secondary hadron rescattering as an enhancement mechanism, we compare strangeness production at the SPS and AGS with predictions of the transport model RQMD.Comment: 11 pages, including 4 figures, LATE

    Identification of metabolic engineering targets through analysis of optimal and sub-optimal routes

    Get PDF
    Identification of optimal genetic manipulation strategies for redirecting substrate uptake towards a desired product is a challenging task owing to the complexity of metabolic networks, esp. in terms of large number of routes leading to the desired product. Algorithms that can exploit the whole range of optimal and suboptimal routes for product formation while respecting the biological objective of the cell are therefore much needed. Towards addressing this need, we here introduce the notion of structural flux, which is derived from the enumeration of all pathways in the metabolic network in question and accounts for the contribution towards a given biological objective function. We show that the theoretically estimated structural fluxes are good predictors of experimentally measured intra-cellular fluxes in two model organisms, namely, Escherichia coli and Saccharomyces cerevisiae. For a small number of fluxes for which the predictions were poor, the corresponding enzyme-coding transcripts were also found to be distinctly regulated, showing the ability of structural fluxes in capturing the underlying regulatory principles. Exploiting the observed correspondence between in vivo fluxes and structural fluxes, we propose an in silico metabolic engineering approach, iStruF, which enables the identification of gene deletion strategies that couple the cellular biological objective with the product flux while considering optimal as well as sub-optimal routes and their efficiency.This work was supported by the Portuguese Science Foundation [grant numbers MIT-Pt/BS-BB/0082/2008, SFRH/BPD/44180/2008 to ZS] (http://www.fct.pt/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A collaborative platform for management of chronic diseases via guideline-driven individualized care plans

    Get PDF
    Older age is associated with an increased accumulation of multiple chronic conditions. The clinical management of patients suffering from multiple chronic conditions is very complex, disconnected and time-consuming with the traditional care settings. Integrated care is a means to address the growing demand for improved patient experience and health outcomes of multimorbid and long-term care patients. Care planning is a prevalent approach of integrated care, where the aim is to deliver more personalized and targeted care creating shared care plans by clearly articulating the role of each provider and patient in the care process. In this paper, we present a method and corresponding implementation of a semi-automatic care plan management tool, integrated with clinical decision support services which can seamlessly access and assess the electronic health records (EHRs) of the patient in comparison with evidence based clinical guidelines to suggest personalized recommendations for goals and interventions to be added to the individualized care plans. We also report the results of usability studies carried out in four pilot sites by patients and clinicians

    Filling Kinetic Gaps: Dynamic Modeling of Metabolism Where Detailed Kinetic Information Is Lacking

    Get PDF
    Integrative analysis between dynamical modeling of metabolic networks and data obtained from high throughput technology represents a worthy effort toward a holistic understanding of the link among phenotype and dynamical response. Even though the theoretical foundation for modeling metabolic network has been extensively treated elsewhere, the lack of kinetic information has limited the analysis in most of the cases. To overcome this constraint, we present and illustrate a new statistical approach that has two purposes: integrate high throughput data and survey the general dynamical mechanisms emerging for a slightly perturbed metabolic network.This paper presents a statistic framework capable to study how and how fast the metabolites participating in a perturbed metabolic network reach a steady-state. Instead of requiring accurate kinetic information, this approach uses high throughput metabolome technology to define a feasible kinetic library, which constitutes the base for identifying, statistical and dynamical properties during the relaxation. For the sake of illustration we have applied this approach to the human Red blood cell metabolism (hRBC) and its capacity to predict temporal phenomena was evaluated. Remarkable, the main dynamical properties obtained from a detailed kinetic model in hRBC were recovered by our statistical approach. Furthermore, robust properties in time scale and metabolite organization were identify and one concluded that they are a consequence of the combined performance of redundancies and variability in metabolite participation.In this work we present an approach that integrates high throughput metabolome data to define the dynamic behavior of a slightly perturbed metabolic network where kinetic information is lacking. Having information of metabolite concentrations at steady-state, this method has significant relevance due its potential scope to analyze others genome scale metabolic reconstructions. Thus, I expect this approach will significantly contribute to explore the relationship between dynamic and physiology in other metabolic reconstructions, particularly those whose kinetic information is practically nulls. For instances, I envisage that this approach can be useful in genomic medicine or pharmacogenomics, where the estimation of time scales and the identification of metabolite organization may be crucial to characterize and identify (dis)functional stages

    THE ROLE OF INTERDEPENDENCE IN THE MICRO-FOUNDATIONS OF ORGANIZATION DESIGN: TASK, GOAL, AND KNOWLEDGE INTERDEPENDENCE

    Get PDF
    Interdependence is a core concept in organization design, yet one that has remained consistently understudied. Current notions of interdependence remain rooted in seminal works, produced at a time when managers’ near-perfect understanding of the task at hand drove the organization design process. In this context, task interdependence was rightly assumed to be exogenously determined by characteristics of the work and the technology. We no longer live in that world, yet our view of interdependence has remained exceedingly task-centric and our treatment of interdependence overly deterministic. As organizations face increasingly unpredictable workstreams and workers co-design the organization alongside managers, our field requires a more comprehensive toolbox that incorporates aspects of agent-based interdependence. In this paper, we synthesize research in organization design, organizational behavior, and other related literatures to examine three types of interdependence that characterize organizations’ workflows: task, goal, and knowledge interdependence. We offer clear definitions for each construct, analyze how each arises endogenously in the design process, explore their interrelations, and pose questions to guide future research
    • …
    corecore