1,619 research outputs found

    Higher accuracy protein Multiple Sequence Alignment by Stochastic Algorithm

    Get PDF
    Multiple Sequence Alignment gives insight into evolutionary, structural and functional relationships among the proteins. Here, a novel Protein Alignment by Stochastic Algorithm (PASA) is developed. Evolutionary operators of a genetic algorithm, namely, mutation and selection are utilized in combining the output of two most important sequence alignment programs and then developing an optimized new algorithm. Efficiency of protein alignments is evaluated in terms of Total Column score which is equal to the number of correctly aligned columns between a test alignment and the reference alignment divided by the total number of columns in the reference alignment. The PASA optimizer achieves, on an average, significant better alignment over the well known individual bioinformatics tools. This PASA is statistically the most accurate protein alignment method today. It can have potential applications in drug discovery processes in the biotechnology industry

    Microstructure and Crystallographic Texture of Aluminium Composite

    Get PDF
    The objective of the present work is to study the hot deformation behaviour of Al alloy-SiC Composites and to analyze the microstructure and crystallographic texture. Dispersing finer size hard particles in Al alloys restricted the flow of grains and tends to alter the texture. Al composites were homogenized and subjected to compression test using universal testing machine at various strain rates and temperatures. The deformed microstructure was studied under microscope paying particular emphasis to understand the mechanism of material flow. The crystallographic texture of the deformed samples was found out using x-ray diffactometer. The results depict that Al composites can safely be deformed at 400 oC and at 0.01 /s strain rate and the microstructure shows dynamic recrystallization as the predominant mechanism of material flow.  It was also observed that at higher strain rate (10/s) of deformation, the interface decohesion between the metallic matrix and ceramic phase was observed.  Adiabatic shear bands (localized flow) were observed when the materials deformed at room temperature (30 oC) and at strain rate of 0.01/s.  The texture measurement of Al composites, at the safe region, shows the components of (011) [100], (001) [1-10], (010) [101].  This study indicated that Goss and cube texture are favorable for the easy deformation of Al composite

    Early performance of cocoa (Theobroma cacao L.)genotypes in arecanut under Assam condition of North Eastregion of India

    Get PDF
    Cocoa is an important plantation crop grown in southern parts of India. Though many cocoa varieties have been released for cultivation in different parts of India, there is no variety recommended for cultivation exclusively for India’s North East region, especially Assam, where arecanut is grown as an important cash crop. Therefore the present investigation was undertaken to study the performance of twelve cocoa genotypes for its growth, pod yield and yield attributing traits for subsequent research programmes. The data for growth, pod yield and yield attributing traits were recorded three years after planting for five years (2015 to 2019), and the mean data were used for analysis. Genotype VTLC 11 significantly produced greater plant height (2.70 m), stem circumference (27.73 cm), height at jorquetting (36.16 cm) and canopy area (17.00 m2). Mean average pod yield among the genotypes varied from 20.65 to 48.40 tree-1 year-1. Genotype VTLC 19 produced significantly higher pod yield (48.40), number of fresh beans pod-1 (34.06), fresh bean weight pod-1 (229.65 g), dry bean weight pod-1 (119.32 g), single dry bean weight (1.20 g) and dry bean yield (1.76 kg). Considering the most economic traits of cocoa, VTLC 19 appears to be the most suitable genotype for commercial cultivation in the region

    Isolation and Purification of Heterotetrameric Catalase from a Desiccation Tolerant Cyanobacterium Lyngbya arboricola

    Get PDF
    The desiccation tolerant cyanobacterium Lyngbya arboricola, isolated from bark surfaces of Mangifera indica, possessed up to four stable isoforms of catalase in addition to other antioxidative enzymes, for several years under a dry state. Purification of the two most persistent isoforms of catalase (Cat) has been undertaken by employing acetone precipitation, ethanol: chloroform treatment, gel filtration and ion exchange chromatography. The two isoforms of catalase remained almost unchanged on varying matric and osmotic hydration levels of mats of the cyanobacterium. The purification procedures resulted in a 1.3 % yield of purified single isoform (0.22 mg mL-1 protein) with 709 Units mg-1 specific activity and a purity index of 0.83. Five millimolar of dithiothreitol (DTT) was observed to be pertinent in maintaining the optimum redox state of the enzyme. The purification procedures additionally facilitated the simultaneous elimination and procurement of phycoerythrins (PE) and mycosporine-like amino acids (MAA). Each purified isoform gave a single band (~45kDa) upon SDS-PAGE and denaturing urea isoelectric focusing (IEF) depicted the presence of 2 subunits each of CatA and CatB. The monoisotopic mass and pI value of CatA and CatB as revealed by LC-MS analysis and internal amino acid sequencing was 78.96, 5.89 and 80.77, 5.92, respectively, showing resemblance with CatA of Erysiphe graminis subs. hordei and CatB of Ajellomyces capsulata. The heterotetrameric monofunctional catalase (~320 kDa), due to its stability in the form of resistance to ethanol: chloroform, its thermoalkaliphilic nature and the presence of innumerable hydrophobic amino acid residues (~40%), thus exhibited its potential for biotechnological applications

    Use of Complementary and Alternative Medicine for Work Related Musculoskeletal Disorders Associated with Job Contentment in Dental Professionals: Indian Outlook

    Get PDF
    Background: High prevalence rates of work-related musculoskeletal disorders (WRMSD) among dentists have been reported. Complementary and alternative medicine (CAM) therapies can be helpful in managing and preventing work-related musculoskeletal disorders. The purpose of this study was to determine if dental professionals are using CAM for work-related musculoskeletal disorders. Who have greater job satisfaction: dentist who uses Complementary and alternative medicine (CAM) or conventional therapy (CT) as a treatment modality for WRMSDMethod: Dentists who registered in Uttar Pradesh state, India under Indian Dental Council, Uttar Pradesh branch (n=1134) were surveyed. Data were analyzed using univariate and bivariate analyses and logistic regression.Result: A response rate of 53% (n=601) was obtained, revealing that 82% (n=487) of the respondents suffered from work-related musculoskeletal disorders. The use of complementary and alternative medicine or conventional therapy was reported among 80% (n=390) of the dentists with work-related musculoskeletal disorders. Complementary and alternative medicine users reported greater overall health compared to conventional therapy users (P<0.001). Of those with work-related musculoskeletal disorders, 35.5% (n=172) considered a career change for once, and 4.0% (n=19) reported having left dentistry.Conclusion: Complementary and alternative medicine therapies may improve quality of life, reduce work disruptions and enhance job satisfaction for dentists who suffer from work-related musculoskeletal disorders. It is important that dentists incorporate complementary and alternative medicine strategies into practice to facilitate musculoskeletal health that will enable longer and healthier careers, increase productivity, provide safer workplace and prevent musculoskeletal disorders.Keywords: CAM, dentist, musculoskeletal disorder

    Aerosol optical depths at Mohal-Kullu in the northwestern Indian Himalayan high altitude station during ICARB

    Get PDF
    First time observations of spectral aerosol optical depths (AODs) at Mohal (31.9°N, 77.11°E; altitude 1154 m amsl) in the Kullu valley, located in the northwestern Indian Himalayan region, have been carried out during Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB), as a part of the Indian Space Research Organisation-Geosphere Biosphere Program (ISRO-GBP). AODs at six wavelengths are obtained using Microtops-II Sunphotometer and Ozonometer. The monthly mean values of AOD at 500 nm are found to be 0.27 ± 0.04 and 0.24 ± 0.02 during March and April, 2006 respectively. However, their monthly mean values are 0.33 ± 0.04 at 380 nm and 0.20 ± 0.03 nm at 870 nm during March 2006 and 0.31 ± 0.3 at 380 nm and 0.17 ± 0.2 at 870 nm during April 2006, showing a gradual decrease in AOD with wavelength. The Angstrom wavelength exponent 'α' had a mean value of 0.72 ± 0.05, implying reduced dominance of fine particles. Further, the afternoon AOD values are higher as compared to forenoon values by ~33.0% during March and by ~9.0% during April 2006 and are attributed to the pollutant lifted up from the valley by the evolving boundary layer. Besides the long-range transportation of aerosol particles by airmass from the Great Sahara and the Thar Desert regions to the observing site, the high values of AODs have also been influenced by biomass burning and frequent incidents of forest fire at local levels

    Microscale to Manufacturing Scale-up of Cell-Free Cytokine Production—A New Approach for Shortening Protein Production Development Timelines

    Get PDF
    Engineering robust protein production and purification of correctly folded biotherapeutic proteins in cell-based systems is often challenging due to the requirements for maintaining complex cellular networks for cell viability and the need to develop associated downstream processes that reproducibly yield biopharmaceutical products with high product quality. Here, we present an alternative Escherichia coli-based open cell-free synthesis (OCFS) system that is optimized for predictable high-yield protein synthesis and folding at any scale with straightforward downstream purification processes. We describe how the linear scalability of OCFS allows rapid process optimization of parameters affecting extract activation, gene sequence optimization, and redox folding conditions for disulfide bond formation at microliter scales. Efficient and predictable high-level protein production can then be achieved using batch processes in standard bioreactors. We show how a fully bioactive protein produced by OCFS from optimized frozen extract can be purified directly using a streamlined purification process that yields a biologically active cytokine, human granulocyte-macrophage colony-stimulating factor, produced at titers of 700 mg/L in 10 h. These results represent a milestone for in vitro protein synthesis, with potential for the cGMP production of disulfide-bonded biotherapeutic proteins. Biotechnol. Bioeng. 2011; 108:1570–1578. © 2011 Wiley Periodicals, Inc

    Higher education students’ achievement emotions and their antecedents in e-learning amid COVID-19 pandemic: A multi-country survey

    Get PDF
    The outbreak of the COVID-19 pandemic has had a wide range of negative consequences for higher education students. We explored the generalizability of the control-value theory of achievement emotions for e-learning, focusing on their antecedents. We involved 17019 higher education students from 13 countries, who completed an online survey during the first wave of the pandemic. A structural equation model revealed that proximal antecedents (e-learning self-efficacy, computer self-efficacy) mediated the relation between environmental antecedents (cognitive and motivational quality of the task) and positive and negative achievement emotions, with some exceptions. The model was invariant across country, area of study, and gender. The rates of achievement emotions varied according to these same factors. Beyond their theoretical relevance, these findings could be the basis for policy recommendations to support stakeholders in coping with the challenges of e-learning and the current and future sequelae of the pandemic.info:eu-repo/semantics/publishedVersio

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons

    Full text link
    The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm2^2 are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation

    Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c

    Full text link
    The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.Comment: To be submitted to JINS
    corecore