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 Multiple Sequence Alignment (MSA) gives insight into the analysis of sequence 

conservation, and evolutionary, structural and functional relationships among the 

proteins. Constructing a precise MSA for proteins is an arduous task as the 

computational complexity rises with sequence length and number of sequences. Here, 

a stochastic algorithm is developed to find a more accurate protein MSA to handle 

fairly large number of sequences with high sequence length. This method basically 

uses the alignment outputs of two important individual MSA programs – MCoffee 

and ProbCons – and combines them in a genetic algorithm model. The evolutionary 

operators of the genetic algorithm, namely, mutation and selection are utilized in the 

optimizing process of the algorithm. Performance of this Protein Alignment by 

Stochastic Algorithm (PASA) tool is tested on the Balibase version 3 benchmark 

reference protein datasets. The efficiency of protein sequence alignments is evaluated 

in terms of Total Column (TC) score which is equal to the number of correctly aligned 

columns between the test alignment and the reference alignment divided by the total 

number of columns in the reference alignment. In terms of TC scores, the PASA 

optimizer achieves, on an average, significant better alignment over the well known 
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individual bioinformatics tools. This PASA bioinformatics tool is statistically the most 

accurate protein alignment method. It can have potential applications in the drug 

discovery processes in the biotechnology industry.  
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          Generally, Multiple Sequence Alignment (MSA) for proteins is used to understand 

the extant of sequence conservation, and to find the evolutionary, structural and functional 

relationship among the protein families. MSAs are also necessary for building character 

profiles, establishing phylogenetic relationship, designing primer in PCR experiments and 

predicting protein structures. Constructing a precise MSA for proteins is still a difficult task 

because the computational complexity grows very fast in proportion to the sequence length 

and the number of sequences. Furthermore, it is tough to create an objective function to 

assess the alignment quality1. An accurate solution is possible only for a small number of 

related sequences2. Therefore, most MSA packages use heuristic progressive alignment 

algorithm that don’t necessarily provide optimal solutions3. 

 Some of the routinely used well-known sequence alignment programs are ClustalW, 

Mafft, Muscle, TCoffee, M-Coffee and ProbCons. The popular ClustalW uses the 

progressive alignment approach to align protein sequences. It builds up a multiple 

alignment progressively using a series of pair wise alignments by using phylogenetic tree as 

the reference. It first aligns the most closely related sequences and then the distant ones. 

But it suffers from the limitation that the alignment errors made early in the process can 

never be rectified4. T-Coffee method uses a consistency-based objective function where an 

information library is built up by the local and global alignments and also from 

heterogeneous sources, such as a mixture of alignment programs and structure 



superpositions5. M-Coffee program is a meta-method that merges the output of various 

MSA programs into one single better alignment. It is an extension of the T-Coffee method 

which uses consistency approach to build an alignment6. Mafft tool uses a Fourier 

Transform to determine the homologous position in which an amino acid’s volume and 

polarity are taken into account7. However, the Muscle method of sequence alignment is 

based on iterative progressive alignment algorithm. It uses the traditional sum of pairs score 

as the alignment quality8. ProbCons method is a progressive protein multiple alignment 

algorithm that uses probabilistic consistency information in constructing the alignment9.  

 The manually constructed protein structural alignments are needed as benchmarks 

to compare the effectiveness of various MSA tools.  The Balibase 3.0 benchmark alignment 

database is an assembly of 386 structural protein alignments which are manually verified 

alignments10. This benchmark is categorized into five different groups. The first group is 

made of phylogenetically equidistant members of similar length. The second group 

contains up to three orphan sequences with close relatives. The third group contains 

distantly related sequences, while the fourth and fifth groups involve long terminal and 

internal insertion respectively. The basic purpose of a benchmark is to provide a set of tests 

to compare the efficiencies of alternative computational tools. So, the idea behind this 

benchmarking is that the average best performing software package will be able to find the 

best alignment of the uncharacterized protein sequences.  

 In this model, we use the sequence alignment outputs of two programs, namely, 

ProbCons and MCoffee as the initial alignments. Then a stochastic algorithm with suitable 

mutation and selection operators is used to get a better alignment. The stochastic algorithm 

is a search algorithm that imitates the processes in natural evolutionary systems. It is 

modeled on the principles of evolution via natural selection, employing a population of 

individuals (multiple alignments) that undergo selection in the presence of variation 

inducing mutation operator. It is variously called as genetic algorithm, evolutionary 



computation and so on. Holland first introduced this type of algorithm and later it has been 

applied to many problems in science and engineering systems in finding optimal or near 

optimal solutions11. Genetic algorithm technique has been successfully implemented in 

various multiple sequence alignment problems12-14. Genetic algorithm as a sequence 

alignment optimizer has been successfully applied by taking ClustalW as the initial seeding 

alignment15. 

         In this model, a better protein alignment solution is allowed to evolve over many 

generations, starting from a set of population of alignments. The idea is to obtain the most 

optimized solution.  An objective function is used to evaluate the quality of individual 

alignments. In the current model, new kinds of operators, such as block shift and block 

removal are implemented. The initial 100 population of MSAs from the two program 

outputs, ProbCons and MCoffee are constructed with equal probability. The Protein 

Alignment by Stochastic Algorithm (PASA) combines and improves the alignments over 

successive generations until the most optimized alignment is obtained at the end. This 

PASA method is tested on the most accepted benchmark, Balibase version 3. It achieves a 

statistically significant enhancement of alignment over the other popular methods.  

     The alignment quality of each bioinformatics tool is determined by measuring: 

Quality (Q) and Total Column (TC) scores. Q is the number of correctly aligned residue 

pairs between test alignment and reference alignment divided by the total number of 

aligned residue pairs in the reference alignment. TC is the number of correctly aligned 

columns between test alignment and reference alignment divided by the total number of 

columns in the reference alignment. In general, TC score is lower than the Q score. 

However, the TC score provides a more important measure to evaluate the efficiency of a 

sequence alignment as far as the conserved blocks are concerned. So we are using TC score 

to find the best alignment for the purpose of analysis. Then the corresponding Q for that 

alignment is determined. TC and the Q scores are calculated using software QSCORE.  



 In order to compare the performance of various MSA programs with the PASA 

method, we conduct the Friedman rank test. This is basically a non-parametric test. It 

makes no assumption about the distribution of alignment scores across different pairs of 

MSA programs. Here, instead of using alignment score directly, the ranking of the score 

across the pairs of programs is used for finding the efficiency of a MSA method. The 

higher the alignment score of an alignment program, the better is its rank. Then the 

ranksum is calculated as the sum of ranks for a given MSA program. The concept of null 

hypothesis is used to compare the efficiencies of two MSA programs in terms of TC and Q 

values. Null hypothesis assumes that a pair of programs is equally likely to be good. The 

ranksum is further used to calculate the P-value which measures a probability factor for 

rejecting the null hypothesis. If the P-value is very small (say, � 0.05), the above null 

hypothesis is rejected. Furthermore, the higher the ranksum, the better is the program. If the 

P-value is greater than 0.05, there is no statistically significant difference between the 

efficiencies of two comparable MSA programs. For a set of scores (say, Q and TC) the P-

values are obtained using the Friedman rank test from the statistical analysis package R 

(http://www.r-project.org/).  

       TC and Q scores and the statistical significance of the alignments are summarized in 

tables 1-2. As the algorithm is stochastic, the result will be dependent on initial conditions 

and the way random numbers are called during the run of the program. That is why twelve 

different simulations are considered to find the best result. More number of simulations will 

increase computational time while less number of simulations will provide less efficient 

result. So there are twelve pairs of TC and Q scores for an alignment. But while deciding 

the best alignment, the best TC is considered. The best Q is considered for that 

corresponding alignment. As there is no straightforward relationship between Q and TC, a 

higher Q score might have been lost in some cases. When the alignment of unknown 

sequences are considered, the alignment having the highest alignment score is picked up 



from the twelve simulations and then the corresponding TC and Q values are found. On all 

the test sets and quality measures, PASA model achieves the highest ranking and a 

statistical significant enhancement over the well known alignment methods. In the ranksum 

of Friedman rank test, the program with the highest ranksum most often constructs the most 

accurate alignment.  

        The results on Balibase benchmark alignment database are shown in Table 1-2. PASA 

achieves improvements of 0.7% over the MCoffee, 1.2% over the ProbCons, 14% over the 

ClustalW, and 9.28% over the Mafft in terms of Q scores on Balibase 3 benchmark, as 

shown in Table 1. PASA has enhancements of 3.6% over MCoffee, 7% over ProbCons, 

28% over ClustalW, 24% over Mafft, 14% over Muscle and 24% over TCoffee in terms of 

TC scores measured on Balibase 3 as shown in Table 1. The statistically significant 

differences in the overall TC and Q scores are shown in Table 2.  

It is shown that PASA tool is able to improve sequence alignment by 3%-26% in terms of 

TC scores measured on the Balibase benchmark 3 protein dataset. 

         It requires delicate analysis of the stochastic algorithm to obtain the best alignment. A 

number of operators, such as block insertion, block shifting, block searching in terms of the 

gaps and different types of block crossover and point crossover have been tried. Most of 

those operators have improved the sum of pair scores but in terms Q and TC scores, they 

have failed. In our model we are not using point and other type of crossovers as they are 

found to be disrupting for the alignment. Finding the highest alignment score of a multiple 

protein alignment is an open field of research that is evolving rapidly. We have used a 

simple idea of evolutionary optimization and a genetic algorithm model to start the initial 

population of alignments as the MSA program outputs of two most efficient tools, 

ProbCons and MCoffee. These two sequence alignment programs are different than the 

others in the sense that the average length of characters in the aligned sequences are greater 

than the corresponding aligned sequences found in Balibase version 3 reference alignment. 



So the mutational procedure of gap elimination operator plays a significant role in 

enhancing the final alignment. Eventually we have obtained significant enhancement of 

alignment in terms of Q and TC scores in comparison to the individual MSA methods. It is 

very interesting to note that this PASA alignment program structure is such that the 

program running time reduces by a factor of about 10 when the codes are written in C 

language instead of using Perl.  

       It has been reported that structural alignment programs produce outputs where 11% – 

19% of the core residues are misaligned16. Majority of the benchmark alignments are 

obtained by using the structural alignment programs. So there is a concern over the 

effectiveness of the benchmark alignments. In that case, we suspect that our PASA 

alignment program will provide better alignment accuracy.  

        This type of analysis can be extended to RNA alignments although the work would be 

very messy.  

  It is known in the scientific literature that although a genetic algorithm model can give 

better result, it takes generally more computational time due to the stochastic nature of the 

algorithm. Here we have tracked the program running time for the Balibase subset RV12 

protein reference alignment benchmark (consisting of 88 alignments). It takes 17 minutes 

and 79 minutes in the case of Probcons and MCoffee respectively while for the PASA 

program it is 96 minutes. The absolute computational time can be drastically reduced when 

the program is allowed to run on a multi-cluster system having hundreds of nodes. So the 

PASA tool gives statistically better alignment over the two competing programs while 

maintaining the scale of computational time. The traditional genetic algorithm approach 

towards sequence alignment like SAGA tends to build alignment from the initial random 

alignments of sequences17. But in our current approach, initial alignment solutions are near 

to global optimum as they are the outputs of other important programs. So it takes very less 

time compared to the conventional genetic algorithm programs (data not shown). This 



proves that the stochastic algorithm can be used as an excellent optimizer for the sequence 

alignment problem. In finding a better sequence alignment, generally it is a tough task to 

choose the right MSA program over several programs available in the literature. So the 

present PASA is a better alternative to combine some of the efficient individual methods 

and further improve them to find still better alignment. Furthermore, the PASA is quite 

robust with respect to the evolution of novel individual methods. The PASA has 

incorporated biological knowledge such as structure based derived matrix and some novel 

genetic algorithm operators. It generates good results even below the twilight zone of 

sequence similarity. PASA tool achieves a statistically significant result over the popular 

and efficient protein alignment programs like MCoffee, ProbCons and others. 

 

Method 

 Assessment of a multiple sequence alignment is made by using an Objective 

Function (OF). The fitness value reflects the quality of multiple sequence alignment. It also 

provides an insight into the implicit structural and evolutionary relationships that subsist 

among the aligned sequences. We apply the sum of pairs method as a measure for 

alignment quality. The objective is to maximize the score of alignment. This sum of pair 

scores (S) is defined as, 

               S = � � S (i, j)           (1) 

                       i       j 

where i = 1, 2, .., n-1 (where n = number of sequences in the alignment), j = i +1, i+2, .., n 

and S(i,j) is the value obtained using structure based matrix. The overall alignment score of 

a MSA is the sum of each pair of rows. The alignment score of a pair of rows is the sum of 

the alignments of the individual pair of residues.  

           Mutation is a significant part in the genetic algorithm for finding the optimal 

solution. It helps to prevent the population from stagnating at any “local optima”. Mutation 



alters one or more positions in the sequence from its initial state. Mutation is implemented 

by inserting a gap randomly in a sequence. This can result in an entirely new alignment. 

With these new sequence alignments, the genetic algorithm may be able to arrive at a better 

alignment.  

For each alignment in the population of alignments, gaps are inserted randomly with a fixed 

probability (p) given by the following formulae. 

      p = ln(xy)/(I X 10)                                  (2) 

     

where x is the maximum length of a sequence in the multiple sequences, y is the number of 

sequences and I is the number of columns with identical residues (ignoring gaps). The 

equation (2) has been empirically obtained after analyzing a few set of alignment data.  

        Only a portion of the population of alignments is to be replaced during each 

generation. The simulation terminates when the difference of the best fitness for ten 

consecutive generations is less than 1%. At the nth (n>10) generation, the percentage 

differences between the best fitness of (n-i)th generation and (n-10)th generation are found, 

where i varies from 0 to 9. If all these ten differences are less than 1%, the program is 

terminated, else it proceeds to the next generation. 

 Full methods will be available on the online version of the paper.  
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 Table legends 

 

Table 1: Average of TC scores on the Balibase benchmark 

 The column represents the average of TC score for all the alignments. The Ranksum 



values are obtained from the Friedman test for all the alignments. The highest score in each 

benchmark set is highlighted in bold. 

Table 2: Statistical analysis on the Balibase benchmark 3  

Each value in the table contains the P-value assigned by the Friedman rank test, 

indicating the significance of the difference of alignments between the programs. The upper 

triangle matrix values are derived from the Q scores on the Balibase 3. The signs + and - 

represent that a program in a row performs significantly better and worse respectively than 

that of a program in a column. If the P-value is greater than 0.05, the difference is not 

significant and is shown in parentheses. For example, the PASA ranks higher than the 

ClustalW with a P-value of 2.2 x 10-16. The lower triangle matrix values are obtained from 

the TC scores on the Balibase 3.  

 

Table 1 

Methods Ref 1.1 

(76) 

Ref 

1.2 (88) 

Ref 

2 (82)

Ref 

3 (60)

Ref 

4 (49)

Ref 

5 (31)

Overall

 (386) 

Ranksu

m 

PASA 35.36 67.41 36.12 39.34 21.47 33.33 38.83 2312.5

MCoffee 32.74 66.47 33.94 38.15 21.12 32.43 37.47 2060.5

ProbCon

s 

34.02 64.79 33.50 34.53 19.64 31.17 36.27 1783 

Clustal

W 

23.11 58.70 26.03 29.48 18.58 25.07 30.16 1030.5

Mafft 23.46 57.25 28.53 32.48 18.68 27.44 31.30 1050 

Muscle 30.07 62.36 28.87 32.87 20.37 28.64 33.86 1364.5

TCoffee 25.89 62 28.23 27.88 19.02 23.83 31.14 1207 



 

 

 

 

 

 

Table 2 

Methods PASA MCoffee ProbCons ClustalW Mafft Muscle T Coffee

PASA  +1.0 x 10-

08 

+4.8 x 10-

12 

+<2.2 x 

10-12 

+<2.2 x 

10-12 

+< 2.2 x 

10-16 

+< 2.2 x 

10-16 

MCoffee -< 2.2 x 

10-16 

 +3.6 x 10-

06 

+ < 2.2 x 

10-16 

+< 2.2 x 

10-16 

+< 2.2 x 

10-16 

+< 2.2 x 

10-16 

ProbCons -< 2.2 x 

10-16 

-1.9 x 10-

09 

 +< 2.2 x 

10-16 

+< 2.2 x 

10-16 

+< 2.2 x 

10-16 

+< 2.2 x 

10-16 

ClustalW -< 2.2 x 

10-16 

- < 2.2 x 

10-16 

- < 2.2 x 

10-16 

 -1.6 x 10-

10 

-< 2.2 x 

10-16 

-< 2.2 x 

10-16 

Mafft -< 2.2 x 

10-16 

- < 2.2 x 

10-16 

- < 2.2 x 

10-16 

(0.60)  
-< 2.2 x 

10-16 
- 4.5 x 10-

16 

Muscle -< 2.2 x 

10-16 

- < 2.2 x 

10-16 

-8.0 x 10-

16 

+2.1 x 10-

16 

+9.0 x 10-

09 

 (0.33) 

TCoffee -< 2.2 x 

10-16 

- < 2.2 x 

10-16 

- < 2.2 x 

10-16 

2.4 x 10-16 +0.3 x 10-

04 

(0.34)  

 

 

 

 



 

 

  

 

Full methods 

 

We have implemented affine gap penalty. In this scheme two types of penalties are used for 

the score calculation: one for gap opening and the second for gap extension. The gap 

opening penalty is applied only once when a gap is introduced into the sequence and the 

gap extension penalty is added to the standard gap penalty for each additional gap. 

Optimum gap opening penalties are tested in the range from 5 and 20 and the extension 

penalties are tested between 0 and 2. It is observed that a gap opening penalty of 15, and 

gap extension penalty of 0.9 yielded higher accuracy. The terminal gaps are not scored. 

Sequence weights are incorporated in a multiple sequence alignment in order to correct the 

unequal representation. It has been observed that the inclusion of weighting scheme gives 

only a small improvement in alignment accuracy (about 1%) on the Balibase benchmark 

(16). So PASA is not implementing any kind of weighting scheme. 

                         For a gap insertion in a MSA, a random number r is generated in the range 

of 0 to 1 and for r < p, a gap is inserted at a random position else no gap is inserted in that 

alignment. After insertion of a gap, the remaining sequences of the MSA are padded with 

gaps so that all sequences are of the same length. 

In the Hill Climbing mutation, a new solution is obtained by mutation if the new solution is 

fitter. Otherwise the current solution is retained. The Hill Climbing algorithm works as 

follows: 

For each alignment a of the population of alignments, its current fitness ƒ (a) is calculated. 

Mutate a to produce a mutant m by inserting a gap randomly in one of the sequences and 



then gaps are padded at the end of the other sequences. 

If ƒ (m) is fitter than ƒ (a), then replace a with m else a is retained. 

The fundamental idea behind this local search is that the good solutions tend to cluster 

together.  

Block shift 

 Inspired from the natural phenomenon of jumping genes, where a genetic material 

moves around to different positions within the genome, we have introduced an operator that 

searches a block of gaps and shift it to the neighboring positions. 

Steps are as follows: 

1. Generate two random numbers, r1 and r2 to find out the sequence number and the 

character position in that sequence respectively. 

2. The position corresponds to r2 can be a character or a gap.  

 2.1 If it is a character then look forward for a gap and that position is taken as the 

gap starting position (Gs). If we don't find any gaps, then move on to the next individual of 

alignment. 

 2.2 Count the no of gaps from the gap starting position (Gs) and it is considered as the Gap 

counts (Gc). 

2.3 Now find out the first gap starting position and count gaps (up to next character) for all 

other sequences from Gs to (Gs + Gc). 

   2.4 From 2.2 and 2.3 we can find out the block of gaps (Bg) for the shift. 

3. If the position corresponding to r2 is a gap then, 

3.1 Look backward for a gap and find out the starting position of the gap. This is taken as 

the gap starting position (Gs). 

   3.2 Count the no of gaps from the gap starting position (Gs). It is considered as the Gap 

counts (Gc). 

3.3 Now find out the first gap starting positions and gap counts (up to next character) for all 



other sequences from Gs to (Gs+Gc). 

    3.4 From 3.2 and 3.3 we can find out the block of gaps (Bg) for the shift. 

4. Now we have the block of gaps (Bg) to be shifted. 

5. First we shift towards right for one place and check whether the alignment score is 

increased or not. 

6. If the score increases, the individual is replaced by the shifted individual. Then we go for 

the next individual. 

7. If the score does not increase, we do right shift once more and follow step 6. 

8. If the score does not increase, we perform left shift by one position on the individual and 

follow step 6. 

9. If the score does not increase we do left shift by one  more position and follows step 6. 

10. We perform two times right shift and two times left according to the score. If the score 

is not increased after all the four shifts, the individual is retained in the population and the 

next individual is considered. 

Note here that we are not performing top and bottom block shift because as the blocks of 

gaps are irregular, it will disrupt the entire alignment. 

 

Block elimination 

 Motivated from the biological phenomenon of genetic elimination, where genetic 

material is eliminated from the genome, we have designed an operator block removal. 

Keeping in mind the basic rule of multiple sequence alignment i.e., minimum number of 

gaps should be there in order to construct a multiple sequence alignment. 

Steps are as follows: 

Generate two random numbers, Rs for the sequence number and Rp for the position in that 

sequence respectively. 

Find out a gap from Rp (gap starting position Gsp) and number of gaps from that position 



to the very next residue for the sequence Rs. If there is no gap, then choose the next 

individual in the population. 

Find out the gap starting positions and number of gaps for all other sequences. 

Find out the first common block of gaps which includes maximum number of sequences. 

Eliminate this block of gaps from the alignment. 

Now delete the same number of gaps from all other sequences which are not included in the 

formation of block gaps. 

Compare the scores before and after the block removal. 

If the score increases retain that individual in the population, else discard the individual.   

 

 

     Half of the high scoring alignments will survive unchanged while the other half is 

replaced by the alignments generated by block shifting and removal operators. 

 

     To assess the efficiency of the PASA protein benchmark suites: the Balibase 3.0 is used. 

The program is implemented on a 3 GHz Intel Xeon Dual core processor with 8 GB RAM. 

Fedora core 6 is used as the operating system. The PASA program is compared with the 

Probcons version 1.11, Mcoffee, ClustalW version 1.83, the T-Coffee version 4.96, the 

Mafft version 5.861 and the Muscle version 3.6. All the above programs are exceuted on 

default modes. 

 

 

 

 

Supplementary information is linked to the online version of the paper. 

 



Table legend 

 

Table 1A: Average of Q scores on the Balibase benchmark 

 The column represents the average of Q score for all the alignments. The Ranksum 

values are obtained from the Friedman test for all the alignments. The highest score in each 

benchmark set is highlighted in bold.  

 

 

 

Table 1A 

Methods Ref 1.1 

(76) 

Ref 

1.2 (88) 

Ref 

2 (82)

Ref 

3 (60)

Ref 

4 (49)

Ref 

5 (31)

Overall

 (386) 

Ranksu

m 

PASA 59.29 86.72 85.54 76.88 70.83 74.9 75.69 2322 

MCoffee 58.18 86.32 85.14 76.14 70.35 74.87 75.16 2170 

ProbCon

s 

59.21 85.80 84.68 74.80 70.28 73.98 74.79 2003.5

Clustal

W 

46.82 79.64 79.70 65.86 61.73 63.17 66.15 732.5 

Mafft 47.08 80.58 81.77 72.04 65.22 68.91 69.26 948.5 

Muscle 53.23 83.31 82.99 72.16 66.80 69.61 71.35 1326 

TCoffee 50.08 83.94 83.72 70.24 66.68 70.46 70.85 1305 
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