66 research outputs found
Coloring Hypergraphs Induced by Dynamic Point Sets and Bottomless Rectangles
We consider a coloring problem on dynamic, one-dimensional point sets: points
appearing and disappearing on a line at given times. We wish to color them with
k colors so that at any time, any sequence of p(k) consecutive points, for some
function p, contains at least one point of each color.
We prove that no such function p(k) exists in general. However, in the
restricted case in which points appear gradually, but never disappear, we give
a coloring algorithm guaranteeing the property at any time with p(k)=3k-2. This
can be interpreted as coloring point sets in R^2 with k colors such that any
bottomless rectangle containing at least 3k-2 points contains at least one
point of each color. Here a bottomless rectangle is an axis-aligned rectangle
whose bottom edge is below the lowest point of the set. For this problem, we
also prove a lower bound p(k)>ck, where c>1.67. Hence for every k there exists
a point set, every k-coloring of which is such that there exists a bottomless
rectangle containing ck points and missing at least one of the k colors.
Chen et al. (2009) proved that no such function exists in the case of
general axis-aligned rectangles. Our result also complements recent results
from Keszegh and Palvolgyi on cover-decomposability of octants (2011, 2012).Comment: A preliminary version was presented by a subset of the authors to the
European Workshop on Computational Geometry, held in Assisi (Italy) on March
19-21, 201
Polychromatic Coloring for Half-Planes
We prove that for every integer , every finite set of points in the plane
can be -colored so that every half-plane that contains at least
points, also contains at least one point from every color class. We also show
that the bound is best possible. This improves the best previously known
lower and upper bounds of and respectively. We also show
that every finite set of half-planes can be colored so that if a point
belongs to a subset of at least of the half-planes then
contains a half-plane from every color class. This improves the best previously
known upper bound of . Another corollary of our first result is a new
proof of the existence of small size \eps-nets for points in the plane with
respect to half-planes.Comment: 11 pages, 5 figure
A Characterization of Visibility Graphs for Pseudo-Polygons
In this paper, we give a characterization of the visibility graphs of
pseudo-polygons. We first identify some key combinatorial properties of
pseudo-polygons, and we then give a set of five necessary conditions based off
our identified properties. We then prove that these necessary conditions are
also sufficient via a reduction to a characterization of vertex-edge visibility
graphs given by O'Rourke and Streinu
Colorful Strips
Given a planar point set and an integer , we wish to color the points with
colors so that any axis-aligned strip containing enough points contains all
colors. The goal is to bound the necessary size of such a strip, as a function
of . We show that if the strip size is at least , such a coloring
can always be found. We prove that the size of the strip is also bounded in any
fixed number of dimensions. In contrast to the planar case, we show that
deciding whether a 3D point set can be 2-colored so that any strip containing
at least three points contains both colors is NP-complete.
We also consider the problem of coloring a given set of axis-aligned strips,
so that any sufficiently covered point in the plane is covered by colors.
We show that in dimensions the required coverage is at most .
Lower bounds are given for the two problems. This complements recent
impossibility results on decomposition of strip coverings with arbitrary
orientations. Finally, we study a variant where strips are replaced by wedges
Optimal Time-Convex Hull under the Lp Metrics
We consider the problem of computing the time-convex hull of a point set
under the general metric in the presence of a straight-line highway in
the plane. The traveling speed along the highway is assumed to be faster than
that off the highway, and the shortest time-path between a distant pair may
involve traveling along the highway. The time-convex hull of a point
set is the smallest set containing both and \emph{all} shortest
time-paths between any two points in . In this paper we give an
algorithm that computes the time-convex hull under the metric in optimal
time for a given set of points and a real number with
Conflict-Free Coloring Made Stronger
In FOCS 2002, Even et al. showed that any set of discs in the plane can
be Conflict-Free colored with a total of at most colors. That is,
it can be colored with colors such that for any (covered) point
there is some disc whose color is distinct from all other colors of discs
containing . They also showed that this bound is asymptotically tight. In
this paper we prove the following stronger results:
\begin{enumerate} \item [(i)] Any set of discs in the plane can be
colored with a total of at most colors such that (a) for any
point that is covered by at least discs, there are at least
distinct discs each of which is colored by a color distinct from all other
discs containing and (b) for any point covered by at most discs,
all discs covering are colored distinctively. We call such a coloring a
{\em -Strong Conflict-Free} coloring. We extend this result to pseudo-discs
and arbitrary regions with linear union-complexity.
\item [(ii)] More generally, for families of simple closed Jordan regions
with union-complexity bounded by , we prove that there exists
a -Strong Conflict-Free coloring with at most colors.
\item [(iii)] We prove that any set of axis-parallel rectangles can be
-Strong Conflict-Free colored with at most colors.
\item [(iv)] We provide a general framework for -Strong Conflict-Free
coloring arbitrary hypergraphs. This framework relates the notion of -Strong
Conflict-Free coloring and the recently studied notion of -colorful
coloring. \end{enumerate}
All of our proofs are constructive. That is, there exist polynomial time
algorithms for computing such colorings
Decomposition of Multiple Coverings into More Parts
We prove that for every centrally symmetric convex polygon Q, there exists a
constant alpha such that any alpha*k-fold covering of the plane by translates
of Q can be decomposed into k coverings. This improves on a quadratic upper
bound proved by Pach and Toth (SoCG'07). The question is motivated by a sensor
network problem, in which a region has to be monitored by sensors with limited
battery lifetime
Flattening fixed-angle chains is strongly NP-hard
12th International Symposium, WADS 2011, New York, NY, USA, August 15-17, 2011. ProceedingsPlanar configurations of fixed-angle chains and trees are well studied in polymer science and molecular biology. We prove that it is strongly NP-hard to decide whether a polygonal chain with fixed edge lengths and angles has a planar configuration without crossings. In particular, flattening is NP-hard when all the edge lengths are equal, whereas a previous (weak) NP-hardness proof used lengths that differ in size by an exponential factor. Our NP-hardness result also holds for (nonequilateral) chains with angles in the range [60°âââΔ,180°], whereas flattening is known to be always possible (and hence polynomially solvable) for equilateral chains with angles in the range (60°,150°) and for general chains with angles in the range [90°,180°]. We also show that the flattening problem is strongly NP-hard for equilateral fixed-angle trees, even when every angle is either 90° or 180°. Finally, we show that strong NP-hardness carries over to the previously studied problems of computing the minimum or maximum span (distance between endpoints) among non-crossing planar configurations
Dissection with the Fewest Pieces is Hard, Even to Approximate
We prove that it is NP-hard to dissect one simple orthogonal polygon into another using a given number of pieces, as is approximating the fewest pieces to within a factor of 1+1/1080âΔ .National Science Foundation (U.S.) (Grant CCF-1217423)National Science Foundation (U.S.) (Grant CCF-1065125)National Science Foundation (U.S.) (Grant CCF-1420692
Algorithms for Colourful Simplicial Depth and Medians in the Plane
The colourful simplicial depth of a point x in the plane relative to a
configuration of n points in k colour classes is exactly the number of closed
simplices (triangles) with vertices from 3 different colour classes that
contain x in their convex hull. We consider the problems of efficiently
computing the colourful simplicial depth of a point x, and of finding a point,
called a median, that maximizes colourful simplicial depth.
For computing the colourful simplicial depth of x, our algorithm runs in time
O(n log(n) + k n) in general, and O(kn) if the points are sorted around x. For
finding the colourful median, we get a time of O(n^4). For comparison, the
running times of the best known algorithm for the monochrome version of these
problems are O(n log(n)) in general, improving to O(n) if the points are sorted
around x for monochrome depth, and O(n^4) for finding a monochrome median.Comment: 17 pages, 8 figure
- âŠ