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Abstract. Planar configurations of fixed-angle chains and trees are well
studied in polymer science and molecular biology. We prove that it is
strongly NP-hard to decide whether a polygonal chain with fixed edge
lengths and angles has a planar configuration without crossings. In par-
ticular, flattening is NP-hard when all the edge lengths are equal, whereas
a previous (weak) NP-hardness proof used lengths that differ in size by
an exponential factor. Our NP-hardness result also holds for (nonequilat-
eral) chains with angles in the range [60◦ − ε, 180◦], whereas flattening
is known to be always possible (and hence polynomially solvable) for
equilateral chains with angles in the range (60◦, 150◦) and for general
chains with angles in the range [90◦, 180◦]. We also show that the flat-
tening problem is strongly NP-hard for equilateral fixed-angle trees, even
when every angle is either 90◦ or 180◦. Finally, we show that strong NP-
hardness carries over to the previously studied problems of computing
the minimum or maximum span (distance between endpoints) among
non-crossing planar configurations.
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1 Introduction

Molecular geometry (also called stereochemistry) studies the 3D geometry of the
atoms (and the bonds between them) that constitute a molecule [5]. If we rep-
resent an atom by a vertex and a bond by an edge, we obtain a graph structure;
this structure comes equipped with fixed edge (bond) lengths, making a linkage,
and fixed (bond) angles between incident edges, making a fixed-angle linkage.
In general, a fixed-angle linkage is a geometrically embedded graph that can re-
configure (change embedding) so long as it preserves the fixed edge lengths and
angles [4]. Typical edge (bond) lengths in polymers are 100–270 picometers, and
typical (bond) angles are around 72◦, 90◦, 109◦, 120◦, and 180◦.

Most large (macro)molecules are polymers, and many are nonbranching poly-
mers, meaning that the graph structure decomposes into a chain of substruc-
tures of small size. Examples of nonbranching polymers include proteins, DNA
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strands, and RNA strands. Motivated by this reality, the computational study
of fixed-angle linkages [4] usually focuses on fixed-angle chains, where the graph
is a path (representing the backbone of the polymer), and on fixed-angle trees,
where the graph is a tree, especially caterpillars, representing a small amount of
additional structure attached to the backbone.

Motivated by these applications to polymer science, Soss and Toussaint [8,9]
introduced several computational problems, three of which we study here:

Flattening: Given a fixed-angle linkage, decide whether it has a continuous
non-crossing motion that results in a flat configuration (lying in the plane).

Min flat span: Compute the flat configuration of a fixed-angle linkage with
minimum possible span—distance between the two endpoints.

Max flat span: Compute the flat configuration of a fixed-angle linkage with
maximum possible span.

They proved that all three of these problems are weakly NP-hard, by reduc-
ing from the integer partition problem. Because the integer partition problem
is weakly NP-hard, it is only hard when the numbers in the problem are ex-
ponentially large. Therefore, the reductions given by Soss and Toussaint show
only that the flattening and span problems are hard when the edge lengths dif-
fer by exponential factors, or when the angles have polynomially many bits of
precision. Neither of these assumptions is realistic in the case of polymers: the
edge lengths are all within a factor of 2 or 3 of each other, and the geometric
models (and hence the angles) have some small imprecision (from other forces
and quantum imprecision).

Our results. In this paper, we prove that all three problems are strongly NP-
hard, and thus hard when the edge lengths are all very close (or even identical)
and a constant number of different angles are used. More specifically, we prove
the following special cases to be strongly NP-hard:1

Problem Linkage Edge lengths Angle range Theorem

Flattening fixed-angle chain equilateral [16.26◦, 180◦] 4
Flattening fixed-angle chain Θ(1) [60− ε◦, 180◦] 5
Flattening fixed-angle caterpillar tree equilateral {90◦, 180◦} 3
Min flat span fixed-angle chain equilateral [16.26◦, 180◦] 6
Max flat span fixed-angle chain equilateral [16.26◦, 180◦] 7

The 16.26◦ ≈ arcsin 7
25 angle bound can easily be improved to around 22.6◦,

and perhaps further to 30◦ or 45◦.

Overview. Our proofs start in Section 3 with an artificial problem, flattening
semi-rigid fixed-angle chains, as a building block for the more interesting results
above. In a semi-rigid chain, some sections of the chain can be marked rigid,
meaning that the vertices in the section cannot move relative to each other.
1 A linkage is equilateral if all edge lengths are equal. “Θ(1)” denotes that all edge

lengths are within constant factors of each other.
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Naturally, this additional set of constraints makes flattening more difficult, and
we show that the problem is NP-hard even for equilateral chains with all an-
gles in {90◦, 180◦}. Then we show in Section 4 how to remove the semi-rigidity
constraint using either sharper angles or fixed-angle trees. Finally, in Section 5,
we show how to transform the flat state into one with an especially small or
large span, and guarantee that the chain has a flat state in all cases (of possibly
suboptimal span).

2 Definitions

2.1 Linkages

Definition 1. A linkage consists of a graph G = (V,E) and edge lengths ` :
E → R≥0. G is called the structure graph of the linkage. A configuration of
a linkage in d dimensions is a mapping C : V → Rd satisfying the constraint
`(u, v) = ‖C(u)−C(v)‖ for each edge (u, v) ∈ E. A configuration is non-crossing
if any two edges e1, e2 ∈ E intersect only if the two edges are incident in the
structure graph, and intersect only at their shared vertex.

Definition 2. A fixed-angle linkage is a linkage with an additional set of con-
straints specifying an angle function θi : N (vi) × N (vi) → [0◦, 180◦] for each
vertex vi, where N (vi) is the set of neighbors of vi. In addition to satisfying the
length constraints of the linkage, any configuration of the linkage has the prop-
erty that for each vertex vi ∈ V and each pair of its neighbors vj , vk ∈ N (vi),
the angle ∠vjvivk has measure θi(vj , vk).

Definition 3. A chain of length n is a linkage whose structure graph is G =
(V,E) where V = {v1, v2, . . . , vn} and E = {(v1, v2); (v2, v3); . . . ; (vn−1, vn)}.

Definition 4. A linkage is equilateral if `(e) = 1 for all e ∈ E.

Definition 5. A fixed-angle linkage is orthogonal if all angles θi(vj , vk) are
either 90◦ or 180◦.

Definition 6. A flat state of a fixed-angle linkage is a non-crossing 2D configu-
ration of the linkage. A 3D configuration of a fixed-angle chain can be flattened
if there exists a continuous sequence of non-crossing configurations starting at
the current configuration and ending in a flat state.

Definition 7. The span of a flat state of a fixed-angle chain is the distance
between v1 and vn in that configuration.

Finally, we define a new kind of fixed-angle chain, which places an additional
constraint on the locations of the vertices in a configurations.

Definition 8. A semi-rigid chain of length n is a fixed-angle chain of length n
with constraints to ensure that parts of the chain are rigid. These constraints
are specified in two parts: a sequence s0 < s1 < . . . < s` such that s0 = 1 and
s` = n; and the distance functions d1, . . . , d`, where each di gives all pairwise
distances between the vertices {vsi−1 , vsi−1+1, . . . , vsi}. The articulation points
of a semi-rigid chain are the vertices vs0 , vs1 , . . . , vs`

.
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The additional restrictions imposed by the semi-rigid chain make it easier to
prove that flattening the chain is NP-hard. The relationship between semi-rigid
chains and fixed-angle chains makes it possible to give a reduction from one to
the other.

2.2 Rectilinear Planar Monotone 3-SAT

One variant of the standard 3-SAT problem is planar 3-SAT, where the graph of
the variables and clauses, with edges between variables and the clauses that
contain them, has a planar embedding. Planar 3-SAT is known to be NP-
complete [7]. One variant of planar 3-SAT, rectilinear planar 3-SAT, places three
additional restrictions on the planarity of the graph:

1. All variables and clauses are rectangles.
2. All of the variables lie along a single horizontal line.
3. All edges lie along vertical lines.

Rectilinear planar 3-SAT is also known to be NP-complete [6]. In 2010, de Berg
and Khosravi introduced an even more restricted version of rectilinear planar
3-SAT [3]: an instance of the rectilinear monotone planar 3-SAT problem is a
rectilinear planar 3-SAT instance such that every clause is either all positive or
all negative, all positive clauses lie above the line of variables, and all negative
clauses lie below the line of variables. They proved the following theorem:

Theorem 1. It is NP-complete to decide whether an instance of rectilinear
monotone planar 3-SAT is satisfiable.

3 Flattening Semi-Rigid Chains

In this section, we begin by constructing gadgets for a semi-rigid chain which
have a limited number of flat states. Then in Theorem 2, we use those gadgets
to show that it is NP-hard to find a flat state for an equilateral orthogonal
semi-rigid chain.

Lemma 1. Up to reflection, the semi-rigid chain depicted in Figure 1(a) has
three possible flat states, depicted in Figures 1(a), 1(b), and 1(c).

Lemma 2. Given the location of the section of chain between a0 and a1, each
flat state of the semi-rigid chain depicted in Figure 2 has the following properties:

1. The point a17 has coordinates (3, 0).
2. The y-coordinate of at least one of b1, b2, or b3 must be negative.

Lemmas 1 and 2 can both be proved by case analysis. We now use the results
of Lemma 2 to show the following theorem.
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a0

(0, 0)

a1 (14,−13)

a2 (22,−11)

a3 (26,−9)

a4 (26,−6)

a5 (22,−4)

a6 (14,−2)

a7

(40, 0)

(a)

(b) (c)

Fig. 1. The three possible flat states for the semi-rigid chain given in Fig. 1(a). Each
labeled point is an articulation point; all other sections of the chain are rigid.

Theorem 2. There exists a polynomial-time algorithm reducing from an in-
stance φ of rectilinear planar monotone 3-SAT to an orthogonal equilateral semi-
rigid chain which can be flattened if and only if φ is satisfiable.

Proof. The pins of the clause gadget depicted in Fig. 2 are the rigid chains
between between articulation points a8 and a9, between a11 and a12, and between
a14 and a15. Lemma 2 shows that all possible flat states for that clause gadget
have the property that at least one of b1, b2, or b3 must lie below a certain line.
A clause has the property that at least one of its literals must be true. So to
set up the reduction from one to the other, our literals should be pieces of a
semi-rigid chain such that, if the literal is false, the chain will intersect with
the corresponding pin when it protrudes below the line. That way, if there is a
flat state, then at least one of the literals for that clause must be true. We will
accomplish this using gadgets like those depicted in Fig. 3. If the pin extends
below the line, then the literal gadget must also dip below the line. If the pin
does not extend below the line, then the literal gadget can go either way.

Because we are reducing from monotone rectilinear planar 3-SAT, we know
that each clause will contain either all negative or all positive literals, and that
all positive clauses will lie above the variables while all negative clauses will lie
below the variables. Our choice of gadget for the literal allows us to construct
a clause involving the literal’s negation by mirroring a clause gadget over the
horizontal line and making the pins point upwards instead of downwards.
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a0
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a7

a8

a9

a10

a11a12

a13
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a17

b1

b2

b3

Fig. 2. The semi-rigid chain used for a clause gadget. The articulation points are
a0, . . . , a17. The coordinates of all labelled points are given in Table 1. The parameter
h adjusts the height of the gadget; the parameters w1 and w2 adjust the distances
between the points b1, b2, and b3.

Unfortunately, there are two problems with the idea we have sketched. The
first is direction. In the rigid chain which is partially depicted in Fig. 3, it would
be equally valid to have a flat state where the clause gadget is mirrored across
the line so that its pins point up. If there is only one clause gadget, then we
may say without loss of generality that the clause gadget will fall above the
line. However, as soon as there is more than one clause gadget, we may have
to consider the possibility of flat states where one clause gadget is in the right
position while the other is in the wrong position. Hence, we need a way to
make sure that each clause gadget extends in the right direction. The second
problem we must consider is consistency. In order to correctly convert from the
rectilinear structure to our fixed-angle chain, we must be able to have a clause
gadget appear in between two literal gadgets for the same variable. But if the two
literal gadgets are independent, there is no way to ensure that the two gadgets
will take on the same value.

The modification we make will solve both of these problems. We will have
three separate sections of the chain running parallel to each other. The chain in
the middle will consist of a number of long variable gadgets, one for each variable
in the original formula. The chain above the middle chain will contain the clause
gadgets for all of the positive clauses, as well as smaller literal gadgets. This will
ensure that each clause gadget must extend above the chain; if it extended below,
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Table 1. The coordinates for the labeled points in Fig. 2.

label x-coord y-coord

a0 0 0
a1 w1 − 5 h+ 15
a2 w1 + 3 h+ 13
a3 w1 − 1 h+ 11
a4 w1 − 1 h+ 8
a5 w1 + 3 h+ 6
a6 w1 − 5 h+ 4

label x-coord y-coord

a7 w1 + w2 + 10 h
a8 w1 + w2 + 8 h+ 2
a9 w1 + 12 h+ 2
a10 w1 + 10 h
a11 w1 + 8 h− 2
a12 w1 + 5 h− 2
a13 w1 + 3 h

label x-coord y-coord

a14 w1 + 1 h+ 2
a15 5 h+ 2
a16 3 h
a17 3 0
b1 7 3
b2 w1 + 7 −1
b3 w1 + w2 + 7 3

Fig. 3. The interaction between the pins in the clause gadget and the gadgets used for
the literals.

it would intersect with the chain in the middle. The chain below the middle chain
will contain the clause gadgets for all of the negative clause gadgets, as well as
a number of smaller literal gadgets. A sample of this is depicted in Fig. 4. We
will connect the three chains as depicted in Fig. 5.

We say that a variable is true if the long gadget for that variable in the
middle chain dips below the center line of the middle chain; the variable is false
otherwise. Hence, if a variable is false, then all of the smaller gadgets for that
variable in the top chain must rise above the center line. So a clause containing
positive literals cannot lower one of its pins for a variable which is false. If on
the other hand a variable is true, then any smaller gadgets for that variable in
the bottom chain must also dip below the center line. Hence, any clause with all
negative literals cannot raise the pin for a variable which is true. In other words,
for any clause, the pin which is lowered (or raised, depending on the clause type)
cannot correspond to a false literal. So the only way to get a non-intersecting
flat state is to have at least one true literal in each clause. ut

4 Flattening Fixed-Angle Chains and Trees

In this section, we give reductions from semi-rigid chains to several kinds of fixed-
angle linkages. In Theorem 3, we provide a reduction to orthogonal equilateral
fixed-angle trees. In Theorem 4, we provide a reduction to equilateral fixed-
angle chains with minimum angle arcsin 7

25 ≈ 16.26◦. In Theorem 5, we provide
a reduction to general fixed-angle chains with edge lengths Θ(1) and angles
> 60◦ − ε.
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Fig. 4. A sample of the three pieces of the semi-rigid chain which will be used for the
reduction from rectilinear planar monotone 3-SAT.

Fig. 5. The way in which we connect the three semi-rigid chains from Fig. 4. Once
the locations of the top and bottom chains are fixed, we know that clause gadgets will
protrude upwards from the top chain and downwards from the bottom chain. So the
only possible location for the middle chain is between the two other chains.

Theorem 3. There exists a polynomial-time algorithm which takes as input an
orthogonal equilateral semi-rigid chain, and outputs an orthogonal equilateral
fixed-angle tree that can be flattened if and only if the semi-rigid chain can be
flattened.

Proof. The first step in the conversion process is to merge adjacent edges within
the same rigid piece which have an angle of 180◦ between them. This means
that our semi-rigid chain is no longer equilateral, and instead has integer lengths
which are between 1 and n, where n is the length of the original chain. We then
scale up our semi-rigid chain by a factor of 6. Our goal is to replace the rigidity
constraints of the original chain with some new structure.

Say that points vi−3, vi−2, vi−1, and vi all lie within the same rigid piece. If
we have the locations of vi−1 and vi−2, then there are two possible locations for
vi. To determine which location is correct, it is sufficient to know whether vi−3

lies above or below the line between vi−1 and vi−2. Hence, to impose the rigidity
constraints, it is sufficient to create two types of local gadgets: one gadget which
can only be flattened if vi−3 and vi lie on the same side of the line between
vi−1 and vi−2; and one gadget which can only be flattened if vi−3 and vi lie on
different sides of the line between vi−1 and vi−2. Those gadgets are depicted in
Fig. 6. We attach each gadget halfway down the edge between vi−2 and vi−1.

Any flat state of the fixed-angle tree can be converted to a flat state of the
original semi-rigid chain by removing the new gadget edges. Each gadget can be
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vi−3

vi−2 vi−1

vi

(a) To keep vi and vi−3 on the same side
of the line between vi−1 and vi−2.

vi−3

vi−2 vi−1

vi

(b) To keep vi and vi−3 on different sides
of the line between vi−1 and vi−2.

Fig. 6. The gadgets used in Theorem 3.

thought of as thickening the edge between vi−1 and vi−2, because the gadgets
can lie above or below the edge. The original edges were infinitely thin; the
new edges have thickness 4. Because each edge was scaled up by a factor of 6,
any non-crossing flat state of the original semi-rigid chain will not become self-
intersecting when the gadgets are added. Therefore, any flat state of the original
semi-rigid chain is a flat state of the fixed-angle tree we have created. ut

Theorem 4. There exists a polynomial-time algorithm which takes as input an
orthogonal equilateral semi-rigid chain, and outputs an equilateral fixed-angle
chain such that each flat state of one chain corresponds to a flat state of the
other chain, and the spans differ by a fixed constant factor c.

Proof. We begin by replacing each edge in the original semi-rigid chain with
three edges connected with a fixed angle of 180◦. Next, we introduce several
types of gadgets, each of which can be used to replace a section of the semi-rigid
chain. The first gadget is used to replace any interior edge in a rigid piece which
has fixed-angle 180◦ with the edges on either side. The gadget we use will zig-zag
across the original location of the edge, as depicted in Fig. 7(a). Each edge in
the depicted gadget has length 50, so we can consider each such edge to be a
sequence of 50 smaller equilateral edges.

The second gadget used is known as the turn gadget, which is depicted in
Fig. 7(b). It is used to cause the zig-zag to turn by a total of 90◦. The depicted
flat state for the turn gadget is the only possible flat state, barring reflection of
the whole gadget. If the turn gadget is connected to a zig-zag with a fixed-angle
of 2 arcsin(7/25), then the direction that the zig-zag goes in (that is, whether
the final point in the zig-zag is up or down) determines the direction of rotation
for the turn gadget.

If we were to use only zig-zags and turn gadgets, the result would be a spiral,
because each turn gadget would cause a rotation in the same direction. So in
order to allow us to switch directions, we use the gadget depicted in Fig. 7(c),
which is known as a switch gadget. When a switch gadget is used, it changes the
direction of the zig-zag. This means that when the next turn gadget is used, the
turn will go in the opposite direction to previous turns. Because we scaled up
the original chain, there will always be room to place a switcher gadget between
adjacent turns.
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7

24
25

(a) Zig-zag gadget.

(b) Turn gadget. (c) Switch gadget. (d) Articulation gadget.

Fig. 7. The gadgets used for the proof of Theorem 4.

Together, these three gadgets ensure that if the first three points in our chain
are fixed, then there is only one way to arrange the rest of the chain. This lets
us enforce the rigidity constraints for each rigid piece of the original semi-rigid
chain. To join these rigid pieces together, we use the articulation gadget depicted
in Fig. 7(d). The articulation gadget has only one possible flat state, barring
reflection. It is used to replace the edges adjacent to an articulation point. The
right half of the articulation gadget lies in the same location as the end of the
replaced edge. Therefore, when we apply the fixed-angle constraint from the
original semi-rigid chain, it places the correct restriction on the angle between
the two rigid pieces. In addition, the use of this gadget for each articulation point
(including the ends of the original chain) means that when we transform a flat
state of the original semi-rigid chain to a flat state of the new fixed-angle chain,
the distances between articulation points will be scaled up by a constant factor.

Each of these gadgets replaces a single edge of length 1 with a gadget whose
flat state has length 84 and width 48. Just as in Theorem 3, the fact that we
scaled up the original chain by a factor of 3 means that the substitution of these
gadgets for the original edges of the tree will not create intersections. ut

In 2002, Aloupis et al. showed that every fixed-angle chain with angles be-
tween 90◦ and 180◦ has a canonical flat state [1]. In 2006, Aloupis and Meijer
showed that every equilateral fixed-angle chain with angles strictly between 60◦

and 150◦ has a canonical flat state [2]. We have shown that it is NP-hard to
compute a flat state for some equilateral fixed-angle chains with angles between
16.26◦ and 180◦. This naturally leads to the question of how large the minimum
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an

ai
aj

a0

(a) For the min span problem.

an

ai
aj

a0

(b) For the max span problem.

Fig. 8. How to connect the three semi-rigid chains from Theorem 2 when reducing to
the minimum and maximum span problems. Note the new articulation point ai.

angle can be while still ensuring that flattening is NP-hard. In our next result, we
show that it is NP-hard to compute a flat state for some fixed-angle chains with
angles between θ < 60◦ and 180◦. This result does not use equilateral chains,
but all edges used in this reduction have length Θ(1).

Theorem 5. Given any constant θ < 60◦, there exists a polynomial-time al-
gorithm which takes as input an orthogonal equilateral semi-rigid chain, and
outputs a fixed-angle chain with minimum angle ≥ θ that can be flattened if and
only if the semi-rigid chain can be flattened.

Proof. Insert proof sketch here. ut

5 Flat Span

In this section, we adapt the proof of Theorem 2 to show the NP-hardness of
the related problems of minimum and maximum flat span.

Theorem 6. There exists a polynomial-time algorithm which takes as input a
rectilinear planar monotone 3-SAT instance φ, and outputs an equilateral fixed-
angle chain and a distance d such that the minimum span of the chain in any
flat state is less than d if and only if φ is satisfiable.

Proof. In Theorem 2, we saw a reduction that involved constructing three sep-
arate chains and connecting them as in Fig. 5. For this reduction, we connect
the same three chains as depicted in Fig. 8(a). In the depicted flat state, which
is non-crossing if and only if φ is satisfiable, a0 is at (0, 0), ai is at (w + 2,−1),
and an is at (w, 3), so the span is

√
w2 + 9. There are two other flat states,

both of which can be made non-crossing regardless of whether φ is satisfiable.
In the first flat state, we reflect the middle chain over the articulation point ai,
which moves a0 to coordinates (2w + 4, 0). In the second flat state, we flip the
middle chain over the articulation point ai and then over the articulation point
aj , which moves a0 to coordinates (2w + 4,−6). The span of either flat state
will be >

√
w2 + 9. By applying Theorem 4, we get an equilateral chain whose

minimum span depends on the satisfiability of φ. ut
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Theorem 7. There exists a polynomial-time algorithm which takes as input a
rectilinear planar monotone 3-SAT instance φ, and outputs an equilateral fixed-
angle chain and a distance d such that the maximum span of the chain in any
flat state is greater than d if and only if φ is satisfiable.

Proof. The argument is similar to Theorem 6, but with the three chains from
Theorem 2 arranged as depicted in Fig. 8(b), so that an is at (w + 12, 3). ut
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