6,926 research outputs found

    Spitzer Power-law AGN Candidates in the Chandra Deep Field-North

    Get PDF
    We define a sample of 62 galaxies in the Chandra Deep Field-North whose Spitzer IRAC SEDs exhibit the characteristic power-law emission expected of luminous AGN. We study the multiwavelength properties of this sample, and compare the AGN selected in this way to those selected via other Spitzer color-color criteria. Only 55% of the power-law galaxies are detected in the X-ray catalog at exposures of >0.5 Ms, although a search for faint emission results in the detection of 85% of the power-law galaxies at the > 2.5 sigma detection level. Most of the remaining galaxies are likely to host AGN that are heavily obscured in the X-ray. Because the power-law selection requires the AGN to be energetically dominant in the near- and mid-infrared, the power-law galaxies comprise a significant fraction of the Spitzer-detected AGN population at high luminosities and redshifts. The high 24 micron detection fraction also points to a luminous population. The power-law galaxies comprise a subset of color-selected AGN candidates. A comparison with various mid-infrared color selection criteria demonstrates that while the color-selected samples contain a larger fraction of the X-ray luminous AGN, there is evidence that these selection techniques also suffer from a higher degree of contamination by star-forming galaxies in the deepest exposures. Considering only those power-law galaxies detected in the X-ray catalog, we derive an obscured fraction of 68% (2:1). Including all of the power-law galaxies suggests an obscured fraction of < 81% (4:1).Comment: Accepted for publication in the Astrophysical Journal, 27 pages, 20 figures, 5 tables, version with high-resolution figures and online-only tables available at: http://frodo.as.arizona.edu/~jdonley/powerlaw

    Study of CT Images Processing with the Implementation of MLEM Algorithm using CUDA on NVIDIA’S GPU Framework

    Get PDF
    In medicine, the acquisition process in Computed Tomography Images (CT) is obtained by a reconstruction algorithm. The classical method for image reconstruction is the Filtered Back Projection (FBP). This method is fast and simple but does not use any statistical information about the measurements. The appearance of artifacts and its low spatial resolution in reconstructed images must be considered. Furthermore, the FBP requires of optimal conditions of the projections and complete sets of data. In this paper a methodology to accelerate acquisition process for CT based on the Maximum Likelihood Estimation Method (MLEM) algorithm is presented. This statistical iterative reconstruction algorithm uses a GPU Programming Paradigms and was compared with sequential algorithms in which the reconstruction time was reduced by up to 3 orders of magnitude while preserving image quality. Furthermore, they showed a good performance when compared with reconstruction methods provided by commercial software. The system, which would consist exclusively of a commercial laptop and GPU could be used as a fast, portable, simple and cheap image reconstruction platform in the future

    A semantic interoperability approach to support integration of gene expression and clinical data in breast cancer

    Get PDF
    [Abstract] Introduction. The introduction of omics data and advances in technologies involved in clinical treatment has led to a broad range of approaches to represent clinical information. Within this context, patient stratification across health institutions due to omic profiling presents a complex scenario to carry out multi-center clinical trials. Methods. This paper presents a standards-based approach to ensure semantic integration required to facilitate the analysis of clinico-genomic clinical trials. To ensure interoperability across different institutions, we have developed a Semantic Interoperability Layer (SIL) to facilitate homogeneous access to clinical and genetic information, based on different well-established biomedical standards and following International Health (IHE) recommendations. Results. The SIL has shown suitability for integrating biomedical knowledge and technologies to match the latest clinical advances in healthcare and the use of genomic information. This genomic data integration in the SIL has been tested with a diagnostic classifier tool that takes advantage of harmonized multi-center clinico-genomic data for training statistical predictive models. Conclusions. The SIL has been adopted in national and international research initiatives, such as the EURECA-EU research project and the CIMED collaborative Spanish project, where the proposed solution has been applied and evaluated by clinical experts focused on clinico-genomic studies.Instituto de Salud Carlos III, PI13/02020Instituto de Salud Carlos III, PI13/0028

    Effect of Exercise on Inflammation in Hemodialysis Patients: A Systematic Review

    Get PDF
    Background: In recent years, physical exercise has been investigated for its potential as a therapeutic tool in patients with end-stage renal disease (ESRD) undergoing hemodialysis maintenance treatment (HD). It has been shown that regular practice of moderate-intensity exercise can improve certain aspects of immune function and exert anti-inflammatory effects, having been associated with low levels of pro-inflammatory cytokines and high levels of anti-inflammatory cytokines. Purpose: The aim of this review is to examine the studies carried out in this population that analyzed the effect of intradialytic exercise on the inflammatory state and evaluate which exercise modality is most effective. Methods: The search was carried out in the MEDLINE, CINAHL Web of Science and Cochrane Central Register of Controlled Trials databases from inception to June 2022. The PEDro scale was used to assess methodological quality, and the Cochrane Risk of Bias Tool and MINORS were used to evaluate the risk of bias. The quality of evidence was assessed with GRADE scale. The outcome measures were systemic inflammation biomarkers. Results: Mixed results were found in terms of improving inflammation biomarkers, such as CRP, IL-6 or TNFα, after exercise. Aerobic exercise seems to improve systemic inflammation when performed at medium intensity while resistance training produced better outcomes when performed at high intensity. However, some studies reported no differences after exercise and these results should be taken with caution. Conclusions: The low quality of the evidence suggests that aerobic and resistance exercise during HD treatment improves systemic inflammation biomarkers in patients with ESRD. In any case, interventions that increase physical activity in patients with ESRD are of vital importance as sedentary behaviors are associated with mortality. More studies are needed to affirm solid conclusions and to make intervention parameters, such as modality, dose, intensity or duration, sufficiently clear

    Extremely Red Objects in The Lockman Hole

    Get PDF
    We investigate Extremely Red Objects (EROs) using near- and mid-infrared observations in five passbands (3.6 to 24 micron) obtained from the Spitzer Space Telescope, and deep ground-based R and K imaging. The great sensitivity of the IRAC camera allows us to detect 64 EROs in only 12 minutes of IRAC exposure time, by means of an R-[3.6] color cut (analogous to the traditional red R-K cut). A pure infrared K-[3.6] red cut detects a somewhat different population and may be more effective at selecting z > 1.3 EROs. We find 17% of all galaxies detected by IRAC at 3.6 or 4.5 micron to be EROs. These percentages rise to about 40% at 5.8 micron, and about 60% at 8.0 micron. We utilize the spectral bump at 1.6 micron to divide the EROs into broad redshift slices using only near-infrared colors (2.2/3.6/4.5 micron). We conclude that two-thirds of all EROs lie at redshift z > 1.3. Detections at 24 micron imply that at least 11% of 0.6 1.3 EROs are dusty star-forming galaxies.Comment: to appear in the special Spitzer issue of the ApJ

    IRAC Imaging of Lockman Hole

    Get PDF
    IRAC imaging of a 4'7x4'7 area in the Lockman Hole detected over 400 galaxies in the IRAC 3.6 micron and 4.5 micron bands, 120 in the 5.8 micron, and 80 in the 8 micron bandin 30 minutes of observing time. Color-color diagrams suggest that about half of these galaxies are at redshifts 0.6<z<1.3 with about a quarter at higher redshifts (z>1.3). We also detect IRAC counterparts for 6 of the 7 SCUBA sources and all 9 XMM sources in this area. The detection of the counterparts of the SCUBA sources and galaxies at z>1.3 demonstrates the ability of IRAC to probe the universe at very high redshifts.Comment: 11 pages, 2 figures. accepted by ApJS, Spizter Special Issu
    • 

    corecore