28,383 research outputs found

    Metallicity of high stellar mass galaxies with signs of merger events

    Get PDF
    We focus on an analysis of galaxies of high stellar mass and low metallicity. We cross-correlated the Millenium Galaxy Catalogue (MGC) and the Sloan Digital Sky Survey (SDSS) galaxy catalogue to provide a sample of MGC objects with high resolution imaging and both spectroscopic and photometric information available in the SDSS database. For each galaxy in our sample, we conducted a systematic morphological analysis by visual inspection of MGC images using their luminosity contours. The galaxies are classified as either disturbed or undisturbed objects. We divide the sample into three metallicity regions, within wich we compare the properties of disturbed and undisturbed objects. We find that the fraction of galaxies that are strongly disturbed, indicative of being merger remnants, is higher when lower metallicity objects are considered. The three bins analysed consist of approximatively 15%, 20%, and 50% disturbed galaxies (for high, medium, and low metallicity, respectively). Moreover, the ratio of the disturbed to undisturbed relative distributions of the population age indicator, Dn(4000), in the low metallicity bin, indicates that the disturbed objects have substantially younger stellar populations than their undisturbed counterparts. In addition, we find that an analysis of colour distributions provides similar results, showing that low metallicity galaxies with a disturbed morphology are bluer than those that are undisturbed. The bluer colours and younger populations of the low metallicity, morphologically disturbed objects suggest that they have experienced a recent merger with an associated enhanced star formation rate. [abridged]Comment: Astronomy & Astrophysics, in pres

    Velocity dispersion estimates of APM galaxy clusters

    Get PDF
    We present 83 new galaxy radial velocities in the field of 18 APM clusters with redshifts between 0.06 and 0.13. The clusters have Abell identifications and the galaxies were selected within 0.75 h1^{-1}Mpc in projection from their centers. We derive new cluster velocity dispersions for 13 clusters using our data and published radial velocities. We analyze correlations between cluster velocity dispersions and cluster richness counts as defined in Abell and APM catalogs. The correlations show a statistically significant trend although with a large scatter suggesting that richness is a poor estimator of cluster mass irrespectively of cluster selection criteria and richness definition. We find systematically lower velocity dispersions in the sample of Abell clusters that do not fulfill APM cluster selection criteria suggesting artificially higher Abell richness counts due to contamination by projection effects in this subsample.Comment: Accepted for publication in MNRA

    Effects of galaxy interactions in different environments

    Full text link
    We analyse star formation rates derived from photometric and spectroscopic data of galaxies in pairs in different environments using the 2dF Galaxy Redshift Survey (2dFGRS) and the Sloan Digital Sky Survey (SDSS). The two samples comprise several thousand pairs, suitable to explore into detail the dependence of star formation activity in pairs on orbital parameters and global environment. We use the projected galaxy density derived from the fifth nearest neighbour of each galaxy, with convenient luminosity thresholds to characterise environment in both surveys in a consistent way. Star formation activity is derived through the η\eta parameter in 2dFGRS and through the star formation rate normalised to the total mass in stars, SFR/MSFR/M^*, given by Brinchmann et al. (2004) in the second data release SDSS-DR2. For both galaxy pair catalogs, the star formation birth rate parameter is a strong function of the global environment and orbital parameters. Our analysis on SDSS pairs confirms previous results found with the 2dFGRS where suitable thresholds for the star formation activity induced by interactions are estimated at a projected distance r_{\rm p} = 100 \kpc and a relative velocity ΔV=350\Delta V = 350 km s1s^{-1}. We observe that galaxy interactions are more effective at triggering important star formation activity in low and moderate density environments with respect to the control sample of galaxies without a close companion. Although close pairs have a larger fraction of actively star-forming galaxies, they also exhibit a greater fraction of red galaxies with respect to those systems without a close companion, an effect that may indicate that dust stirred up during encounters could be affecting colours and, partially, obscuring tidally-induced star formation.Comment: accepted MNRA

    The multicomponent 2D Toda hierarchy: Discrete flows and string equations

    Get PDF
    The multicomponent 2D Toda hierarchy is analyzed through a factorization problem associated to an infinite-dimensional group. A new set of discrete flows is considered and the corresponding Lax and Zakharov--Shabat equations are characterized. Reductions of block Toeplitz and Hankel bi-infinite matrix types are proposed and studied. Orlov--Schulman operators, string equations and additional symmetries (discrete and continuous) are considered. The continuous-discrete Lax equations are shown to be equivalent to a factorization problem as well as to a set of string equations. A congruence method to derive site independent equations is presented and used to derive equations in the discrete multicomponent KP sector (and also for its modification) of the theory as well as dispersive Whitham equations.Comment: 27 pages. In the revised paper we improved the presentatio

    Near-infrared K-band Spectroscopic Investigation of Seyfert 2 Nuclei in the CfA and 12 Micron Samples

    Full text link
    We present near-infrared K-band slit spectra of the nuclei of 25 Seyfert 2 galaxies in the CfA and 12 micron samples. The strength of the CO absorption features at 2.3-2.4 micron produced by stars is measured in terms of a spectroscopic CO index. A clear anti-correlation between the observed CO index and the nuclear K-L color is present, suggesting that a featureless hot dust continuum heated by an AGN contributes significantly to the observed K-band fluxes in the nuclei of Seyfert 2 galaxies. After correction for this AGN contribution, we estimate nuclear stellar K-band luminosities for all sources, and CO indices for sources with modestly large observed CO indices. The corrected CO indices for 10 (=40%) Seyfert 2 nuclei are found to be as high as those observed in star-forming or elliptical (=spheroidal) galaxies. We combine the K-band data with measurements of the L-band 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission feature, another powerful indicator for star-formation, and find that the 3.3 micron PAH to K-band stellar luminosity ratios are substantially smaller than those of starburst galaxies. Our results suggest that the 3.3 micron PAH emission originates in the putative nuclear starbursts in the dusty tori surrounding the AGNs, because of its high surface brightness, whereas the K-band CO absorption features detected at the nuclei are dominated by old bulge (=spheroid) stars, and thus may not be a powerful indicator for the nuclear starbursts. We see no clear difference in the strength of the CO absorption and PAH emission features between the CfA and 12 micron Seyfert 2s.Comment: 28 pages, 6 figures, accepted for publication in ApJ (10 October 2004, v614 issue

    Multi-wavelength Observations of the Giant X-ray Flare Galaxy NGC 5905: signatures of tidal disruption

    Full text link
    NGC 5905 is one of the few galaxies with no prior evidence for an AGN in which an X-ray flare, due to the tidal disruption of a star by the massive black hole in the center of the galaxy, was detected by the RASS in 1990-91. Here we present analysis of late-time follow-up observations of NGC 5905 using Chandra, Spitzer VLA 3 GHz and 8 GHz archival data and GMRT 1.28 GHz radio observations. The X-ray image shows no compact source that could be associated with an AGN. Instead, the emission is extended -- likely due to nuclear star formation and the total measured X-ray luminosity is comparable to the X-ray luminosity determined from the 2002 Chandra observations. Diffuse X-ray emission was detected close to the circum-nuclear star forming ring. The Spitzer 2006 mid-infrared spectrum also shows strong evidence of nuclear star formation but no clear AGN signatures. The semi-analytical models of Tommasin et. al. 2010 together with the measured [OIV]/[NeII] line ratio suggest that at most only 5.6% of the total IR Flux at 19 μ\mum is being contributed by the AGN. The GMRT 1.28 GHz observations reveal a nuclear source. In the much higher resolution VLA 3 GHz map, the emission has a double lobed structure of size 2.7'' due to the circumnuclear star forming ring. The GMRT 1.28 GHz peak emission coincides with the center of the circumnuclear ring. We did not detect any emission in the VLA 8 GHz (1996) archival data. The 3 σ\sigma upper limits for the radio afterglow of the TDE at 1.28 GHz, 3 GHz and 8 GHz are 0.17 mJy, 0.09 mJy and 0.09 mJy, respectively. Our studies thus show that (i) NGC 5905 has a declining X-ray flux consistent with a TDE, (ii) the IR flux is dominated by nuclear star formation, (iii) the nuclear radio emission observed from the galaxy is due to circumnuclear star formation, (iv) no compact radio emission associated with a radio afterglow from the TDE is detected.Comment: 12 pages, 8 figures, accepted to be published in Astrophysics and Space Scienc
    corecore